866 resultados para Neural-Like Networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the application of artificial neural networks in the analysis of the structural integrity of a building. The main objective is to apply an artificial neural network based on adaptive resonance theory, called ARTMAP-Fuzzy neural network and apply it to the identification and characterization of structural failure. This methodology can help professionals in the inspection of structures, to identify and characterize flaws in order to conduct preventative maintenance to ensure the integrity of the structure and decision-making. In order to validate the methodology was modeled a building of two walk, and from this model were simulated various situations (base-line condition and improper conditions), resulting in a database of signs, which were used as input data for ARTMAP-Fuzzy network. The results show efficiency, robustness and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet access by wireless networks has grown considerably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paper proposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achieved great results, which showed the effectiveness of our proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic parts are increasingly replacing metal parts due to their excellent physical, chemical and mechanical properties, however they also make them difficult to manufacture by traditional machining methods. The developments carried out in this work are used to estimate tool wear during the grinding of advanced ceramics. The learning process was fed with data collected from a surface grinding machine with tangential diamond wheel and alumina ceramic test specimens, in three cutting configurations: with depths of cut of 120 mu m, 70 mu m and 20 mu m. The grinding wheel speed was 35m/s and the table speed 2.3m/s. Four neural models were evaluated, namely: Multilayer Perceptron, Radial Basis Function, Generalized Regression Neural Networks and the Adaptive Neuro-Fuzzy Inference System. The models'performance evaluation routines were executed automatically, testing all the possible combinations of inputs, number of neurons, number of layers, and spreading. The computational results reveal that the neural models were highly successful in estimating tool wear, since the errors were lower than 4%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet of Things is a new paradigm where smart embedded devices and systems are connected to the Internet. In this context, Wireless Sensor Networks (WSN) are becoming an important alternative for sensing and actuating critical applications like industrial automation, remote patient monitoring and domotics. The IEEE 802.15.4 protocol has been adopted as a standard for WSN and the 6LoWPAN protocol has been proposed to overcome the challenges of integrating WSN and Internet protocols. In this paper, the mechanisms of header compression and fragmentation of IPv6 datagrams proposed in the 6LoWPAN standard were evaluated through field experiments using a gateway prototype and IEEE 802.15.4 nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 μM) and soybean components genistein (Gen, 2 μM), lunasin (Lun, 2 μM), β-conglycinin (β-con, 3 μM), and glycinin (Gly, 3 μM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) is a novel technique of non-invasive brain stimulation which has been used to treat several neuropsychiatric disorders such as major depressive disorder, chronic pain and epilepsy. Recent studies have shown that the therapeutic effects of rTMS are associated with plastic changes in local and distant neural networks. In fact, it has been suggested that rTMS induces long-term potentiation (LTP) and long-term depression (LTD) - like effects. Besides the initial positive clinical results; the effects of rTMS are stilt mixed. Therefore new toots to assess the effects of plasticity non-invasively might be useful to predict its therapeutic effects and design novel therapeutic approaches using rTMS. In this paper we propose that brain-derived neurotrophic factor (BDNF) might be such a tool. Brain-derived neurotrophic factor is a neurotrophin that plays a key role in neuronal survival and synaptic strength, which has also been studied in several neuropsychiatric disorders. There is robust evidence associating BDNF with the LTP/LTD processes, and indeed it has been proposed that BNDF might index an increase or decrease of brain activity - the `yin and yang` BDNF hypothesis. In this article, we review the initial studies combining measurements of BDNF in rTMS clinical trials and discuss the results and potential usefulness of this instrument in the field of rTMS. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, an effective microbial consortium for the biodegradation of phenol was grown under different operational conditions, and the effects of phosphate concentration (1.4 g L-1, 2.8 g L-1, 4.2 g L-1), temperature (25 degrees C, 30 degrees C, 35 degrees C), agitation (150 rpm, 200 rpm, 250 rpm) and pH (6, 7, 8) on phenol degradation were investigated, whereupon an artificial neural network (ANN) model was developed in order to predict degradation. The learning, recall and generalization characteristics of neural networks were studied using data from the phenol degradation system. The efficiency of the model generated by the ANN was then tested and compared with the experimental results obtained. In both cases, the results corroborate the idea that aeration and temperature are crucial to increasing the efficiency of biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. The face validity and applicability of the concept of NPT are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. The experiment that was analyzed consisted of a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas, like the fusiform gyrus, is approximately the stimulus presentation duration. On the other hand, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the NPT in right but not left dorsal lateral prefrontal cortex depends on the stimulus emotional content. The summary measures of HRF obtained by a standard approach did not detect the variations observed in the NPT. Hum Brain Mapp, 2012. (C) 2010 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work clarifies the relationship between network circuit (topology) and behavior (information transmission and synchronization) in active networks, e. g. neural networks. As an application, we show how to determine a network topology that is optimal for information transmission. By optimal, we mean that the network is able to transmit a large amount of information, it possesses a large number of communication channels, and it is robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabasi-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists.