770 resultados para Neural network method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Digital soil mapping is an alternative for the recognition of soil classes in areas where pedological surveys are not available. The main aim of this study was to obtain a digital soil map using artificial neural networks (ANN) and environmental variables that express soillandscape relationships. This study was carried out in an area of 11,072 ha located in the Barra Bonita municipality, state of São Paulo, Brazil. A soil survey was obtained from a reference area of approximately 500 ha located in the center of the area studied. With the mapping units identified together with the environmental variables elevation, slope, slope plan, slope profile, convergence index, geology and geomorphic surfaces, a supervised classification by ANN was implemented. The neural network simulator used was the Java NNS with the learning algorithm "back propagation." Reference points were collected for evaluating the performance of the digital map produced. The occurrence of soils in the landscape obtained in the reference area was observed in the following digital classification: medium-textured soils at the highest positions of the landscape, originating from sandstone, and clayey loam soils in the end thirds of the hillsides due to the greater presence of basalt. The variables elevation and slope were the most important factors for discriminating soil class through the ANN. An accuracy level of 82% between the reference points and the digital classification was observed. The methodology proposed allowed for a preliminary soil classification of an area not previously mapped using mapping units obtained in a reference area

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main goal of the Airborne project is to develop, at technology readiness level 8 (TRL8), a few selected robotic aerial technologies for quick localization of victims by avalanches by equipping drones with two forefront sensors used in SAR operations in case of avalanches, namely the ARVA and RECCO. This thesis focuses on the design, development, and guidance of the TRL8 quadrotor developed during the project. We present and describe the design method that allowed us to obtain an EMI shielded UAV capable of integrating both RECCO and ARVA sensors. Besides, is presented the avionics and power train design and building procedure in order to obtain a modular UAV frame that can be easily carried by rescuers and achieves all the performance benchmarks of the project. Additionally, in addition to the onboard algorithms, a multivariate regressive convolutional neural network whose goal is the localization of the ARVA signal is presented. On guidance, the automatic flight procedure is described, and the onboard waypoint generator algorithm is presented. The goal of this algorithm is the generation and execution of an automatic grid pattern without the need to know the map in advance and without the support of a control ground station (CGS). Moreover, we present an iterative trajectory planner that does not need pre-knowledge of the map and uses Bézier curves to address optimal, dynamically feasible, safe, and re-plannable trajectories. The goal is to develop a method that allows local and fast replannings in case of an obstacle pop up or if some waypoints change. This makes the novel planner suitable to be applied in SAR operations. The introduction of the final version of the quadrotor is supported by internal flight tests and field tests performed in real operative scenarios by the Club Alpino Italiano (CAI).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first topic analyzed in the thesis will be Neural Architecture Search (NAS). I will focus on two different tools that I developed, one to optimize the architecture of Temporal Convolutional Networks (TCNs), a convolutional model for time-series processing that has recently emerged, and one to optimize the data precision of tensors inside CNNs. The first NAS proposed explicitly targets the optimization of the most peculiar architectural parameters of TCNs, namely dilation, receptive field, and the number of features in each layer. Note that this is the first NAS that explicitly targets these networks. The second NAS proposed instead focuses on finding the most efficient data format for a target CNN, with the granularity of the layer filter. Note that applying these two NASes in sequence allows an "application designer" to minimize the structure of the neural network employed, minimizing the number of operations or the memory usage of the network. After that, the second topic described is the optimization of neural network deployment on edge devices. Importantly, exploiting edge platforms' scarce resources is critical for NN efficient execution on MCUs. To do so, I will introduce DORY (Deployment Oriented to memoRY) -- an automatic tool to deploy CNNs on low-cost MCUs. DORY, in different steps, can manage different levels of memory inside the MCU automatically, offload the computation workload (i.e., the different layers of a neural network) to dedicated hardware accelerators, and automatically generates ANSI C code that orchestrates off- and on-chip transfers with the computation phases. On top of this, I will introduce two optimized computation libraries that DORY can exploit to deploy TCNs and Transformers on edge efficiently. I conclude the thesis with two different applications on bio-signal analysis, i.e., heart rate tracking and sEMG-based gesture recognition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focuses on automating the time-consuming task of manually counting activated neurons in fluorescent microscopy images, which is used to study the mechanisms underlying torpor. The traditional method of manual annotation can introduce bias and delay the outcome of experiments, so the author investigates a deep-learning-based procedure to automatize this task. The author explores two of the main convolutional-neural-network (CNNs) state-of-the-art architectures: UNet and ResUnet family model, and uses a counting-by-segmentation strategy to provide a justification of the objects considered during the counting process. The author also explores a weakly-supervised learning strategy that exploits only dot annotations. The author quantifies the advantages in terms of data reduction and counting performance boost obtainable with a transfer-learning approach and, specifically, a fine-tuning procedure. The author released the dataset used for the supervised use case and all the pre-training models, and designed a web application to share both the counting process pipeline developed in this work and the models pre-trained on the dataset analyzed in this work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Imaging technologies are widely used in application fields such as natural sciences, engineering, medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization methods, which are based on minimization of suitable energies, and make use of knowledge about the image formation model (forward operator) and prior knowledge on the solution, but lack in incorporating knowledge directly from data. On the other hand, the more recent learned approaches can easily learn the intricate statistics of images depending on a large set of data, but do not have a systematic method for incorporating prior knowledge about the image formation model. The main purpose of this thesis is to discuss data-driven image reconstruction methods which combine the benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed inverse problems. Mathematical formulation and numerical approaches for image IPs, including linear as well as strongly nonlinear problems are described. More specifically we address the Electrical impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton method and integrating the regularization learned by a data-adaptive neural network. Furthermore we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that integrates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are then applied to the solution of the limited electrods problem in EIT, combining compressive sensing techniques and deep learning strategies. Finally, a transformer-based neural network architecture is adapted to restore the noisy solution of the Computed Tomography problem recovered using the filtered back-projection method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ill-conditioned inverse problems frequently arise in life sciences, particularly in the context of image deblurring and medical image reconstruction. These problems have been addressed through iterative variational algorithms, which regularize the reconstruction by adding prior knowledge about the problem's solution. Despite the theoretical reliability of these methods, their practical utility is constrained by the time required to converge. Recently, the advent of neural networks allowed the development of reconstruction algorithms that can compute highly accurate solutions with minimal time demands. Regrettably, it is well-known that neural networks are sensitive to unexpected noise, and the quality of their reconstructions quickly deteriorates when the input is slightly perturbed. Modern efforts to address this challenge have led to the creation of massive neural network architectures, but this approach is unsustainable from both ecological and economic standpoints. The recently introduced GreenAI paradigm argues that developing sustainable neural network models is essential for practical applications. In this thesis, we aim to bridge the gap between theory and practice by introducing a novel framework that combines the reliability of model-based iterative algorithms with the speed and accuracy of end-to-end neural networks. Additionally, we demonstrate that our framework yields results comparable to state-of-the-art methods while using relatively small, sustainable models. In the first part of this thesis, we discuss the proposed framework from a theoretical perspective. We provide an extension of classical regularization theory, applicable in scenarios where neural networks are employed to solve inverse problems, and we show there exists a trade-off between accuracy and stability. Furthermore, we demonstrate the effectiveness of our methods in common life science-related scenarios. In the second part of the thesis, we initiate an exploration extending the proposed method into the probabilistic domain. We analyze some properties of deep generative models, revealing their potential applicability in addressing ill-posed inverse problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our objective for this thesis work was the deployment of a Neural Network based approach for video object detection on board a nano-drone. Furthermore, we have studied some possible extensions to exploit the temporal nature of videos to improve the detection capabilities of our algorithm. For our project, we have utilized the Mobilenetv2/v3SSDLite due to their limited computational and memory requirements. We have trained our networks on the IMAGENET VID 2015 dataset and to deploy it onto the nano-drone we have used the NNtool and Autotiler tools by GreenWaves. To exploit the temporal nature of video data we have tried different approaches: the introduction of an LSTM based convolutional layer in our architecture, the introduction of a Kalman filter based tracker as a postprocessing step to augment the results of our base architecture. We have obtain a total improvement in our performances of about 2.5 mAP with the Kalman filter based method(BYTE). Our detector run on a microcontroller class processor on board the nano-drone at 1.63 fps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Depth estimation from images has long been regarded as a preferable alternative compared to expensive and intrusive active sensors, such as LiDAR and ToF. The topic has attracted the attention of an increasingly wide audience thanks to the great amount of application domains, such as autonomous driving, robotic navigation and 3D reconstruction. Among the various techniques employed for depth estimation, stereo matching is one of the most widespread, owing to its robustness, speed and simplicity in setup. Recent developments has been aided by the abundance of annotated stereo images, which granted to deep learning the opportunity to thrive in a research area where deep networks can reach state-of-the-art sub-pixel precision in most cases. Despite the recent findings, stereo matching still begets many open challenges, two among them being finding pixel correspondences in presence of objects that exhibits a non-Lambertian behaviour and processing high-resolution images. Recently, a novel dataset named Booster, which contains high-resolution stereo pairs featuring a large collection of labeled non-Lambertian objects, has been released. The work shown that training state-of-the-art deep neural network on such data improves the generalization capabilities of these networks also in presence of non-Lambertian surfaces. Regardless being a further step to tackle the aforementioned challenge, Booster includes a rather small number of annotated images, and thus cannot satisfy the intensive training requirements of deep learning. This thesis work aims to investigate novel view synthesis techniques to augment the Booster dataset, with ultimate goal of improving stereo matching reliability in presence of high-resolution images that displays non-Lambertian surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Networks of Kuramoto oscillators with a positive correlation between the oscillators frequencies and the degree of their corresponding vertices exhibit so-called explosive synchronization behavior, which is now under intensive investigation. Here we study and discuss explosive synchronization in a situation that has not yet been considered, namely when only a part, typically a small part, of the vertices is subjected to a degree-frequency correlation. Our results show that in order to have explosive synchronization, it suffices to have degree-frequency correlations only for the hubs, the vertices with the highest degrees. Moreover, we show that a partial degree-frequency correlation does not only promotes but also allows explosive synchronization to happen in networks for which a full degree-frequency correlation would not allow it. We perform a mean-field analysis and our conclusions were corroborated by exhaustive numerical experiments for synthetic networks and also for the undirected and unweighed version of a typical benchmark biological network, namely the neural network of the worm Caenorhabditis elegans. The latter is an explicit example where partial degree-frequency correlation leads to explosive synchronization with hysteresis, in contrast with the fully correlated case, for which no explosive synchronization is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the artificial neural networks (ANN) and partial least squares (PLS) regression were applied to UV spectral data for quantitative determination of thiamin hydrochloride (VB1), riboflavin phosphate (VB2), pyridoxine hydrochloride (VB6) and nicotinamide (VPP) in pharmaceutical samples. For calibration purposes, commercial samples in 0.2 mol L-1 acetate buffer (pH 4.0) were employed as standards. The concentration ranges used in the calibration step were: 0.1 - 7.5 mg L-1 for VB1, 0.1 - 3.0 mg L-1 for VB2, 0.1 - 3.0 mg L-1 for VB6 and 0.4 - 30.0 mg L-1 for VPP. From the results it is possible to verify that both methods can be successfully applied for these determinations. The similar error values were obtained by using neural network or PLS methods. The proposed methodology is simple, rapid and can be easily used in quality control laboratories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Animal welfare has been an important research topic in animal production mainly in its ways of assessment. Vocalization is found to be an interesting tool for evaluating welfare as it provides data in a non-invasive way as well as it allows easy automation of process. The present research had as objective the implementation of an algorithm based on artificial neural network that had the potential of identifying vocalization related to welfare pattern indicatives. The research was done in two parts, the first was the development of the algorithm, and the second its validation with data from the field. Previous records allowed the development of the algorithm from behaviors observed in sows housed in farrowing cages. Matlab® software was used for implementing the network. It was selected a retropropagation gradient algorithm for training the network with the following stop criteria: maximum of 5,000 interactions or error quadratic addition smaller than 0.1. Validation was done with sows and piglets housed in commercial farm. Among the usual behaviors the ones that deserved enhancement were: the feed dispute at farrowing and the eventual risk of involuntary aggression between the piglets or between those and the sow. The algorithm was able to identify through the noise intensity the inherent risk situation of piglets welfare reduction.