870 resultados para Neural Control Systems
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating corresponding velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
This paper presents a disturbance attenuation controller for horizontal position stabilization for hover and automatic landings of a Rotary-wing Unmanned Aerial Vehicle (RUAV) operating in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a nonlinear state feedback H-infinity controller is designed to achieve rapid horizontal position tracking in a gusty environment. The resultant control variables are further treated in consideration of practical constraints (flapping dynamics, servo dynamics and time lag effect) for implementation purpose. The high-fidelity closed-loop simulation using parameters of the Vario helicopter verifies performance of the proposed position controller. It not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H-infinity controller exhibits great performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
This paper presents a novel and practical procedure for estimating the mean deck height to assist in automatic landing operations of a Rotorcraft Unmanned Aerial Vehicle (RUAV) in harsh sea environments. A modified Prony Analysis (PA) procedure is outlined to deal with real-time observations of deck displacement, which involves developing an appropriate dynamic model to approach real deck motion with parameters identified through implementing the Forgetting Factor Recursive Least Square (FFRLS) method. The model order is specified using a proper order-selection criterion based on minimizing the summation of accumulated estimation errors. In addition, a feasible threshold criterion is proposed to separate the dominant components of deck displacement, which results in an accurate instantaneous estimation of the mean deck position. Simulation results demonstrate that the proposed recursive procedure exhibits satisfactory estimation performance when applied to real-time deck displacement measurements, making it well suited for integration into ship-RUAV approach and landing guidance systems.
Resumo:
The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.
Resumo:
Aerial inspection of pipelines, powerlines, and other large linear infrastructure networks has emerged in a number of civilian remote sensing applications. Challenges relate to automating inspection flight for under-actuated aircraft with LiDAR/camera sensor constraints whilst subjected to wind disturbances. This paper presents new improved turn planning strategies with guidance suitable for automation of linear infrastructure inspection able to reduce inspection flight distance by including wind information. Simulation and experimental flight tests confirmed the flight distance saving, and the proposed guidance strategies exhibited good tracking performance in a range of wind conditions.
Resumo:
This thesis examined the impact of previous hamstring injury and fatigue on the function of the hamstring muscles and their neural control. The work established the role of neuromuscular inhibition after hamstring injury and involved the development of a new field testing device for eccentric hamstring strength, which is now in high demand in elite sport worldwide. David has four peer-reviewed publications from this doctoral work.
Resumo:
A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.
Resumo:
Machine vision is emerging as a viable sensing approach for mid-air collision avoidance (particularly for small to medium aircraft such as unmanned aerial vehicles). In this paper, using relative entropy rate concepts, we propose and investigate a new change detection approach that uses hidden Markov model filters to sequentially detect aircraft manoeuvres from morphologically processed image sequences. Experiments using simulated and airborne image sequences illustrate the performance of our proposed algorithm in comparison to other sequential change detection approaches applied to this application.
Resumo:
The Modicon Communication Bus (Modbus) protocol is one of the most commonly used protocols in industrial control systems. Modbus was not designed to provide security. This paper confirms that the Modbus protocol is vulnerable to flooding attacks. These attacks involve injection of commands that result in disrupting the normal operation of the control system. This paper describes a set of experiments that shows that an anomaly-based change detection algorithm and signature-based Snort threshold module are capable of detecting Modbus flooding attacks. In comparing these intrusion detection techniques, we find that the signature-based detection requires a carefully selected threshold value, and that the anomaly-based change detection algorithm may have a short delay before detecting the attacks depending on the parameters used. In addition, we also generate a network traffic dataset of flooding attacks on the Modbus control system protocol.
Resumo:
For decades Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) have used computers to monitor and control physical processes in many critical industries, including electricity generation, gas pipelines, water distribution, waste treatment, communications and transportation. Increasingly these systems are interconnected with corporate networks via the Internet, making them vulnerable and exposed to the same risks as those experiencing cyber-attacks on a conventional network. Very often SCADA networks services are viewed as a specialty subject, more relevant to engineers than standard IT personnel. Educators from two Australian universities have recognised these cultural issues and highlighted the gap between specialists with SCADA systems engineering skills and the specialists in network security with IT background. This paper describes a learning approach designed to help students to bridge this gap, gain theoretical knowledge of SCADA systems' vulnerabilities to cyber-attacks via experiential learning and acquire practical skills through actively participating in hands-on exercises.
Resumo:
This paper presents a system which enhances the capabilities of a light general aviation aircraft to land autonomously in case of an unscheduled event such as engine failure. The proposed system will not only increase the level of autonomy for the general aviation aircraft industry but also increase the level of dependability. Safe autonomous landing in case of an engine failure with a certain level of reliability is the primary focus of our work as both safety and reliability are attributes of dependability. The system is designed for a light general aviation aircraft but can be extended for dependable unmanned aircraft systems. The underlying system components are computationally efficient and provides continuous situation assessment in case of an emergency landing. The proposed system is undergoing an evaluation phase using an experimental platform (Cessna 172R) in real world scenarios.
Resumo:
This paper describes a novel obstacle detection system for autonomous robots in agricultural field environments that uses a novelty detector to inform stereo matching. Stereo vision alone erroneously detects obstacles in environments with ambiguous appearance and ground plane such as in broad-acre crop fields with harvested crop residue. The novelty detector estimates the probability density in image descriptor space and incorporates image-space positional understanding to identify potential regions for obstacle detection using dense stereo matching. The results demonstrate that the system is able to detect obstacles typical to a farm at day and night. This system was successfully used as the sole means of obstacle detection for an autonomous robot performing a long term two hour coverage task travelling 8.5 km.
Resumo:
Dynamic positioning of marine craft refers to the use of the propulsion system to regulate the vessel position and heading. This type of motion control is commonly used in the offshore industry for surface vessels, and it is also used for some underwater vehicles. In this paper, we use a port-Hamiltonian framework to design a novel nonlinear set-point-regulation controller with integral action. The controller handles input saturation and guarantees internal stability, rejection of unknown constant disturbances, and (integral-)input-to-state stability.
Resumo:
In extreme weather conditions, thrusters on ships and rigs may be subject to severe thrust losses caused by ventilation and in-and-out-of-water events. When a thruster ventilates, air is sucked down from the surface and into the propeller. In more severe cases, parts of or even the whole propeller can be out of the water. These losses vary rapidly with time and cause increased wear and tear in addition to reduced thruster performance. In this paper, a thrust allocation strategy is proposed to reduce the effects of thrust losses and to reduce the possibility of multiple ventilation events. This thrust allocation strategy is named antispin thrust allocation, based on the analogous behavior of antispin wheel control of cars. The proposed thrust allocation strategy is important for improving the life span of the propulsion system and the accuracy of positioning for vessels conducting station keeping in terms of dynamic positioning or thruster-assisted position mooring. Application of this strategy can result in an increase of operational time and, thus, increased profitability. The performance of the proposed allocation strategy is demonstrated with experiments on a model ship.