956 resultados para Network Modelling
Resumo:
One of the world's largest wollastonite deposits was formed at the contact of the northern Hunter Mountain Batholith (California, USA) in Paleozoic sediments. Wollastonite occurs as zones of variable thickness surrounding layers or nodules of quartzite in limestones. A minimum formation temperature of 650 degrees C is estimated from isolated periclase-bearing lenses in that area. Contact metamorphism of siliceous carbonates has produced mineral assemblages that are consistent with heterogeneous, and partly limited infiltration of water-rich fluids, compatible with O-18/O-16 and C-13/C-12 isotopic patterns recorded in carbonates. Oxygen isotope compositions of wollastonites in the study area may also not require infiltration of large quantities of externally-derived fluids that were out of equilibrium with the rocks. 8180 values of wollastonite are high (14.8 parts per thousand to 25.0 parts per thousand; median: 19.7 parts per thousand) and close to those of the host limestone (19.7 parts per thousand to 28 parts per thousand; median: 24.9 parts per thousand) and quartz (18.0 parts per thousand. to 29.1 parts per thousand; median: 22.6 parts per thousand). Isotopic disequilibrium exists at quartz/wollastonite and wollastonite/calcite boundaries. Therefore, classical batch/Rayleigh fractionation models based on reactant and product equilibrium are not applicable to the wollastonite rims. An approach that relies on local instantaneous mass balance for the reactants, based on the wollastonite-forming reaction is suggested as an alternative way to model wollastonite reaction rims. This model reproduces many of the measured delta O-18 values of wollastonite reaction rims of the current study to within +/- 1 parts per thousand, even though the wollastonite compositions vary by almost 10 parts per thousand. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.
Resumo:
Nessie is an Autonomous Underwater Vehicle (AUV) created by a team of students in the Heriot Watt University to compete in the Student Autonomous Underwater Competition, Europe (SAUC-E) in August 2006. The main objective of the project is to find the dynamic equation of the robot, dynamic model. With it, the behaviour of the robot will be easier to understand and movement tests will be available by computer without the need of the robot, what is a way to save time, batteries, money and the robot from water inside itself. The object of the second part in this project is setting a control system for Nessie by using the model
Resumo:
ICN Videoconferencing by the Iowa Department of Transportation
Resumo:
Background: Adenosquamous carcinoma (AC) of the head and neck is a distinct entity first described in 1968. Its natural history is more aggressive than squamous-cell carcinoma. The aim of this study was to assess the clinical profile, patterns of failure, and prognostic factors in patients with AC of the head and neck treated by radiation therapy (RT) with or without chemotherapy (CT).Materials and Methods: Data from 19 patients with stage I (n = 3), II (n = 1), III (n = 4), or IVa (n = 11) AC, treated between 1989 and 2009, were collected in a retrospective multicenter Rare Cancer Network study. Median age was 60 years (range, 48−73). Fifteen patients were male, and 4 female. Risk factors, including perineural invasion, lymphangitis, vascular invasion, positive margins were present in the majority (83%) of the patients. Tumour sites included oral cavity in 4, oropharynx in 4, hypopharynx in 2, larynx in 2, salivary glands in 2, nasal vestibule in 2, maxillary sinus in 2, and nasopharynx in 1 patient. Surgery (S) was performed in all but 5 patients. S alone was performed in only 1 patient, and definitive RT alone in 3 patients. Fifteen patients received combined modality treatment (S+RT in 11, RT+CT in 2, and all of the three modalities in 2 patients). Median RT dose to the primary and to the nodes was 66 Gy (range, 50−72) and 53 Gy (range, 44−66), respectively (1.8−2.0 Gy/fr., 5 fr./week). In 4 patients, the planning treatment volume included the primary tumour site only. Eight patients were treated with 2D RT, 7 with 3D conformal RT, and 2 with intensity-modulated RT.Results: After a median follow-up period of 39 months (range, 9−62), 9 patients developed distant metastases (lung, bone, mediastinum, and liver), 7 presented nodal recurrences, and only 4 had a local relapse at the primary site (all in-field recurrences). At last follow-up, 7 patients were alive without disease, 1 alive with disease, 9 died from progressive disease, and 2 died from intercurrent disease. The 3-year and median overall survival, disease-free survival (DFS), and locoregional control rates were 55% (95% confidence interval [CI]: 32−78%) and 39 months, 34% (95% CI: 12−56%) and 22 months, and 50% (95% CI: 22−78%) and 33 months, respectively. In multivariate analysis (Cox model), DFS was negatively influenced by the presence of extracapsular extension (p = 0.01) and advanced stage (IV versus I−III, p = 0.002).Conclusions: Overall prognosis of locoregionally advanced AC remains poor, and distant metastases and nodal relapse occur in almost half of the cases. However, local control is relatively better, and early stage AC patients had prolonged DFS when treated with combined-modality treatment.
Resumo:
The regulation of the immune system is controlled by many cell surface receptors. A prominent representative is the 'molecular switch' HVEM (herpes virus entry mediator) that can activate either proinflammatory or inhibitory signaling pathways. HVEM ligands belong to two distinct families: the TNF-related cytokines LIGHT and lymphotoxin-α, and the Ig-related membrane proteins BTLA and CD160. HVEM and its ligands have been involved in the pathogenesis of various autoimmune and inflammatory diseases, but recent reports indicate that this network may also be involved in tumor progression and resistance to immune response. Here we summarize the recent advances made regarding the knowledge on HVEM and its ligands in cancer cells, and their potential roles in tumor progression and escape to immune responses. Blockade or enhancement of these pathways may help improving cancer therapy.
Resumo:
Iowa DOT savings through use of Iowa Communications Network (ICN)videoconferencing.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
State Agency Audit Report
Resumo:
State Agency Audit Report
Resumo:
Within the framework of the Rare Cancer Network Study, we examined 30 patients suffering from small cell neuroendocrine prostate cancer, either in an early/localized or an advanced/metastatic stage. Patients were treated with cisplatin-based chemotherapy, with or without pelvic radiotherapy. Two patients with early disease achieved complete remission for a duration of 19 and 22 months. Three patients with advanced disease achieved complete remission for 6, 7, and 54 months, respectively. Twenty-five patients succumbed to massive local and/or distant failure. No patient presented with brain metastases as the initial site of relapse. Small cell neuroendocrine prostate carcinoma is a very aggressive disease with a poor prognosis, even in its localized form. Despite initial response, the common cisplatin-based chemotherapy plus radiotherapy failed to improve outcome markedly. Improvement will come from understanding the biology of the disease and integrating new targeted therapies into the treatment of this rare and aggressive tumor.
Resumo:
This paper provides a theoretical and empirical analysis of the relationship between airport congestion and airline network structure. We find that the development of hub-and-spoke (HS) networks may have detrimental effects on social welfare in presence of airport congestion. The theoretical analysis shows that, although airline pro ts are typically higher under HS networks, congestion could create incentives for airlines to adopt fully-connected (FC) networks. However, the welfare analysis leads to the conclusion that airlines may have an inefficient bias towards HS networks. In line with the theoretical analysis, our empirical results show that network airlines are weakly infl uenced by congestion in their choice of frequencies from/to their hub airports. Consistently with this result, we con firm that delays are higher in hub airports controlling for concentration and airport size. Keywords: airlines; airport congestion; fully-connected networks, hub-and-spoke net- works; network efficiency JEL Classifi cation Numbers: L13; L2; L93