905 resultados para Natural gas industry
Resumo:
High efficiency gas turbine based systems, utility deregulation and more stringent environmental regulations strongly favor the use of natural gas over coal and other solid fuels in new electricity generators. Solid fuels could continue to compete, however, if a low cost gasifier fed by low cost feedstocks can be coupled with a gas turbine system. We examine on-site gasification of coal with other domestic fuels in an indirectly heated gasifier as a strategy to lower the costs of solid fuel systems. The systematics of gaseous pyrolysis yields assembled with the help of thermal measurement data and molecular models suggests blending carbonaceous fuels such as coal, coke or char with oxygenated fuels such as biomass, RDF, MSW, or dried sewage sludge. Such solid fuel blending can, with the help of inexpensive catalysts, achieve an optimum balance of volatiles, heating values and residual char thus reducing the technical demands upon the gasifier. Such simplifications should lower capital and operating costs of the gasifier to the mutual benefit of both solid fuel communities.
Resumo:
In this paper, a methodology for the study of a fuel cell cogeneration system and applied to a university campus is developed. The cogeneration system consists of a molten carbonate fuel cell associated to an absorption refrigeration system. The electrical and cold-water demands of the campus are about 1,000 kW and 1,840 kW (at 7°C), respectively. The energy, exergy and economic analyses are presented. This system uses natural gas as the fuel and operates on electric parity. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.
Resumo:
In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.
Resumo:
The São Paulo State has 36 million people, 25 million living in three metropolitan areas. Only the São Paulo Metropolitan Region (SPMR) includes the state capital (São Paulo City) plus 38 cities, where ≈ 18 million people live, affected by frequent episodes of ozone, NOx, and fine particulate matter. In 2003, it was estimated that 15.1% of the SPMR vehicles used ethanol and 70.2% used the local gasoline. Natural gas vehicles have witnessed a booming participation in the last years, mainly through conversion of gasoline cars, and the present fleet is almost one million vehicles. To face the problems generated by light vehicles emissions the Federal Government set a program called PROCONVE - Program of Air Pollution Control from Vehicles - in 1986 and since then until now a significant reduction was reached, but the growth of the fleet hides most of the emission cuts. A discussion covers the evolution of the air pollution management in São Paulo; and innovative tools for air pollution management - both for mobile and stationary sources. This is an abstract of a paper presented at the 98th AWMA Annual Conference and Exhibition (Minneapolis, MN 6/21-24/2005).
Resumo:
Incluye Bibliografía
Resumo:
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Includes bibliography
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
This report analyses the agriculture, energy, and health sectors in Trinidad and Tobago to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Trinidad and Tobago. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on root crops, green vegetables and fisheries. For these sectors combined, the cumulative loss under the A2 scenario is calculated as approximately B$2.24 and approximately B$1.72 under the B2 scenario by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios, respectively. Given the potential for significant damage to the agriculture sector a large number of potential adaptation measures were considered. Out of these a short-list of 10 potential options were selected by applying 10 evaluation criteria. All of the adaptation strategies showed positive benefits. The analysis indicate that the options with the highest net benefits are: (1) Building on-farm water storage, (2) Mainstreaming climate change issues into agricultural management and (3) Using drip irrigation. Other attractive options include water harvesting. The policy decisions by governments should include these assessments, the omitted intangible benefits, as well as the provision of other social goals such as employment. The analysis of the energy sector has shown that the economic impact of climate change during 2011-2050 is similar under the A2 (US$142.88 million) and B2 (US$134.83 million) scenarios with A2 scenario having a slightly higher cost (0.737% of 2009 GDP) than the B2 scenario (0.695% of 2009 GDP) for the period. On the supply side, analyses indicate that Trinidad and Tobago’s energy sector will be susceptible to the climate change policies of major energy-importing countries (the United States of America and China), and especially to their renewable energy strategies. Implementation of foreign oil substitution policy by the United States of America will result in a decline in Trinidad and Tobago’s Liquefied Natural Gas (LNG) export (equivalent to 2.2% reduction in 2009 GDP) unless an alternative market is secured for the lost United States of America market. China, with its rapid economic growth and the highest population in the world, offers a potential replacement market for Trinidad and Tobago’s LNG export. In this context the A2 scenario will offer the best option for Trinidad and Tobago’s energy sector. The cost-benefit analysis undertaken on selected adaptation strategies reveal that the benefit-cost ratio of replacing electric water heaters with solar water heaters is the most cost-effective. It was also found that the introduction of Compact Fluorescent Light (CFL) and Variable Refrigerant Volume (VRV) air conditioners surpasses the projected cost of increased electricity consumption due to climate change, and provides an economic rationale for the adoption of these adaptation options even in a situation of increased electricity consumption occasioned by climate change. Finally, the conversion of motor fleets to Compressed Natural Gas (CNG) is a cost-effective adaptation option for the transport sector, although it has a high initial cost of implementation and the highest per capita among the four adaptation options evaluated. To investigate the effect of climate change on the health sector dengue fever, leptospirosis, food borne illnesses, and gastroenteritis were examined. The total number of new dengue cases for the period 2008 to 2050 was 204,786 for BAU, 153,725 for A2 and 131,890 for the B2 scenario. With regard to the results for leptospirosis, A2 and B2 seem to be following a similar path with total number of new cases in the A2 scenario being 9,727 and 9,218 cases under the B2 scenario. Although incidence levels in the BAU scenario coincided with those of A2 and B2 prior to 2020, they are somewhat lower post 2020. A similar picture emerges for the scenarios as they relate to food-borne illnesses and to gastroenteritis. Specifically for food-borne illnesses, the BAU scenario recorded 27,537 cases, the A2 recorded 28,568 cases and the B2 recorded 28,679 cases. The focus on the selected sources of morbidity in the health sector has highlighted the fact that the vulnerability of the country’s health sector to climate change does not depend solely on exogenously derived impacts, but also on the behaviour and practices among the population. It is clear that the vulnerability which became evident in the analysis of the impacts on dengue fever, leptospirosis and food-borne illnesses is not restricted solely to climate or other external factors. The most important adaptation strategy being recommended targets lifestyle, behaviour and attitude changes. The population needs to be encouraged to alter their behaviours and practices so as to minimise their exposure to harmful outcomes as it relates to the incidence of these diseases.
Resumo:
The energy sector is a dominant one in Trinidad and Tobago and it plays an important role in the twin-island republic‟s economy. In 2008, the share of the energy sector in gross domestic product (GDP) amounted to approximately 48% while contributing 57% to total Government revenue. In that same year, the sector‟s share of merchandise exports was 88%, made up mainly of refined oil products including petroleum, liquefied natural gas (LNG), and natural gas liquids (Central Bank of Trinidad and Tobago, 2009). Trinidad and Tobago is the main exporter of oil in the Caribbean region and the main producer of liquefied natural gas in Latin America and the Caribbean. The role of the country‟s energy sector is, therefore, not limited to serving as the engine of growth for the national economy but also includes providing energy security for the small island developing States of the Caribbean. However, with its hydrocarbon-based economy, Trinidad and Tobago is ranked seventh in the world in terms of carbon dioxide (CO2) emissions per capita, producing an estimated 40 million tonnes of CO2 annually. Almost 90% of these CO2 emissions are attributed directly to the energy sector through petrochemical production (56%), power generation (30%) and flaring (3%). Trinidad and Tobago is a ratified signatory to the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Although, as a non-Annex 1 country, Trinidad and Tobago is not required to cut its greenhouse gas emissions under the Protocol, it is currently finalizing a climate change policy document as well as a national energy policy with specific strategies to address climate change. The present study complements the climate change policy document by providing an economic analysis of the impact that climate change could have on the energy sector in Trinidad and Tobago under the Intergovernmental Panel on Climate Change alternative climate scenarios (A2 and B2) as compared to a baseline situation of no climate change. Results of analyses indicate that, in the short-run, climate change, represented by change in temperature, is not a significant determinant of domestic consumption of energy, electricity in particular, in Trinidad and Tobago. With energy prices subsidized domestically and fixed for years at a time, energy price does not play a role in determining electricity demand. Economic growth, as indicated by Gross Domestic Product (GDP), is the single major determinant of electricity consumption in the short-run. In the long-run, temperature, GDP, and patterns of electricity use, jointly determine electricity consumption. Variations in average annual temperature due to climate change for the A2 scenario are expected to lead to an increase in electricity consumption per capita, equivalent to an annual increase of 1.07% over the 2011 baseline value of electricity consumption per capita. Under the B2 scenario, the average annual increase in electricity consumption per capita over the 2011 baseline value is expected to be 1.01%. The estimated economic impact of climate change on electricity consumption for the period 2011-2050 is valued at US$ 142.88 million under the A2 scenario and US$ 134.83million under the B2 scenario. These economic impact estimates are equivalent to a loss of 0.737% of 2009 GDP under the A2 climate scenario and a loss of 0.695% of 2009 GDP under the B2 scenario. On the energy supply side, sea level rise and storm surges present significant risks to oil installations and infrastructure at the Petroleum Company of Trinidad and Tobago (PETROTRIN) Pointe-a-Pierre facilities (Singh and El Fouladi, 2006). However, data limitations do not permit the conduct of an economic analysis of the impact of projected sea level rise on oil and gas production.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)