860 resultados para Nano-cristaux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viscoelastic behaviour of a range of polyurethane thermoplastic elastomer montmorillonite nanocomposites has been studied using a nanohardness tester. For softer Shore hardness 80A materials, the introduction of the organo-clay increased the creep strain obtained while the nano-indentor was held at constant load. The increase in creep strain was greatest for materials containing an organo-clay modified with a more hydrophilic quaternary alkylammonium surfactant and with higher loadings of the hydrophilic organo-clay. This suggested the effect might be due to a plasticising effect of the excess surfactant. For the harder Shore hardness 55D materials, the addition of the organo-clays produced only a small decrease in the creep strain, probably due to the interconnected hard domains in this material.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano/micro grinding of tungsten carbide (WC) mould inserts was performed. A form accuracy of 〜200nm (in PV) and a surface roughness of 〜7nm were achieved. Nanoindentation revealed that small chipping or cracking occurred even at a penetration depth of 38nm, which could hinder the further improvement of surface quality during grinding. It was found that when grinding was conducted at nanometric scale, the microstructure of the work material and the morphology of the WC grains should be taken into account to enable a fully ductile removal. Copyright 2005 by the Japan Society of Mechanical Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior properties of ferritic/martensitic steels in a radiation environment (low swelling, low activation under irradiation and good corrosion resistance) make them good candidates for structural parts in future reactors and spallation sources. While it cannot substitute for true reactor experiments, irradiation by charged particles from accelerators can reduce the number of reactor experiments and support fundamental research for a better understanding of radiation effects in materials. Based on the nature of low energy accelerator experiments, only a small volume of material can be uniformly irradiated. Micro and nanoscale post irradiation tests thus have to be performed. We show here that nanoindentation and micro-compression testing on T91 and HT-9 stainless steel before and after ion irradiation are useful methods to evaluate the radiation induced hardening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferritic/martensitic (F/M) steels (T91, HT-9, EP 823) are candidate materials for future liquid lead or lead bismuth eutectic (LBE) cooled nuclear reactors. To understand the corrosion of these materials in LBE, samples of each material were exposed at 535 °C for 600 h and 200 h at an oxygen content of 10 wt%. After the corrosion tests, the samples were analyzed using SEM, WDX and nano-indentation in cross section. Multi-layered oxide scales were found on the sample surfaces. The compositions of these oxide layers are not entirely in agreement with the literature. The nano-indentation results showed that the E-modulus and hardness of the oxide layers are significantly lower than the values for dense bulk oxide materials. It is assumed that the low values stem from high porosity in the oxide layers. Comparison with in-air oxidized steels show that the E-modulus decreases with increasing oxide layer thickness. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental results on the performance of a series of coated, D-shaped optical fiber sensors that display high spectral sensitivities to external refractive index. Sensitivity to the chosen index regime and coupling of the fiber core mode to the surface plasmon resonance (SPR) is enhanced by using specific materials as part of a multi-layered coating. We present strong evidence that this effect is enhanced by post ultraviolet radiation of the lamellar coating that results in the formation of a nano-scale surface relief corrugation structure, which generates an index perturbation within the fiber core that in turn enhances the coupling. We have found reasonable agreement when we modeling the fiber device. It was found that the SPR devices operate in air with high coupling efficiency in excess of 40 dB with spectral sensitivities that outperform a typical long period grating, with one device yielding a wavelength spectral sensitivity of 12000 nm/RIU in the important aqueous index regime. The devices generate SPRs over a very large wavelength range, (visible to 2 mu m) by alternating the polarization state of the illuminating light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.