955 resultados para NOAA Office of Ocean Exploration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton (α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ – as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403–1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RAPID-MOCHA array has observed the Atlantic Meridional overturning circulation (AMOC) at 26.5°N since 2004. During 2009/2010, there was a transient 30% weakening of the AMOC driven by anomalies in geostrophic and Ekman transports. Here, we use simulations based on the Met Office Forecast Ocean Assimilation Model (FOAM) to diagnose the relative importance of atmospheric forcings and internal ocean dynamics in driving the anomalous geostrophic circulation of 2009/10. Data assimilating experiments with FOAM accurately reproduce the mean strength and depth of the AMOC at 26.5°N. In addition, agreement between simulated and observed stream functions in the deep ocean is improved when we calculate the AMOC using a method that approximates the RAPID observations. The main features of the geostrophic circulation anomaly are captured by an ensemble of simulations without data-assimilation. These model results suggest that the atmosphere played a dominant role in driving recent interannual variability of the AMOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper seeks to elucidate the fundamental differences between the nonconservation of potential temperature and that of Conservative Temperature, in order to better understand the relative merits of each quantity for use as the heat variable in numerical ocean models. The main result is that potential temperature is found to behave similarly to entropy, in the sense that its nonconservation primarily reflects production/destruction by surface heat and freshwater fluxes; in contrast, the nonconservation of Conservative Temperature is found to reflect primarily the overall compressible work of expansion/contraction. This paper then shows how this can be exploited to constrain the nonconservation of potential temperature and entropy from observed surface heat fluxes, and the nonconservation of Conservative Temperature from published estimates of the mechanical energy budgets of ocean numerical models. Finally, the paper shows how to modify the evolution equation for potential temperature so that it is exactly equivalent to using an exactly conservative evolution equation for Conservative Temperature, as was recently recommended by IOC et al. (2010). This result should in principle allow ocean modellers to test the equivalence between the two formulations, and to indirectly investigate to what extent the budget of derived nonconservative quantities such as buoyancy and entropy can be expected to be accurately represented in ocean models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many institutions worldwide have developed ocean reanalyses systems (ORAs) utilizing a variety of ocean models and assimilation techniques. However, the quality of salinity reanalyses arising from the various ORAs has not yet been comprehensively assessed. In this study, we assess the upper ocean salinity content (depth-averaged over 0–700 m) from 14 ORAs and 3 objective ocean analysis systems (OOAs) as part of the Ocean Reanalyses Intercomparison Project. Our results show that the best agreement between estimates of salinity from different ORAs is obtained in the tropical Pacific, likely due to relatively abundant atmospheric and oceanic observations in this region. The largest disagreement in salinity reanalyses is in the Southern Ocean along the Antarctic circumpolar current as a consequence of the sparseness of both atmospheric and oceanic observations in this region. The West Pacific warm pool is the largest region where the signal to noise ratio of reanalysed salinity anomalies is >1. Therefore, the current salinity reanalyses in the tropical Pacific Ocean may be more reliable than those in the Southern Ocean and regions along the western boundary currents. Moreover, we found that the assimilation of salinity in ocean regions with relatively strong ocean fronts is still a common problem as seen in most ORAs. The impact of the Argo data on the salinity reanalyses is visible, especially within the upper 500m, where the interannual variability is large. The increasing trend in global-averaged salinity anomalies can only be found within the top 0–300m layer, but with quite large diversity among different ORAs. Beneath the 300m depth, the global-averaged salinity anomalies from most ORAs switch their trends from a slightly growing trend before 2002 to a decreasing trend after 2002. The rapid switch in the trend is most likely an artefact of the dramatic change in the observing system due to the implementation of Argo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world's ocean, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans' MLD characteristics appear to be directly linked to different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essentially in correctly simulating observed MLD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic sea ice cover is thinning and retreating, causing changes in surface roughness that in turn modify the momentum flux from the atmosphere through the ice into the ocean. New model simulations comprising variable sea ice drag coefficients for both the air and water interface demonstrate that the heterogeneity in sea ice surface roughness significantly impacts the spatial distribution and trends of ocean surface stress during the last decades. Simulations with constant sea ice drag coefficients as used in most climate models show an increase in annual mean ocean surface stress (0.003 N/m2 per decade, 4.6%) due to the reduction of ice thickness leading to a weakening of the ice and accelerated ice drift. In contrast, with variable drag coefficients our simulations show annual mean ocean surface stress is declining at a rate of -0.002 N/m2 per decade (3.1%) over the period 1980-2013 because of a significant reduction in surface roughness associated with an increasingly thinner and younger sea ice cover. The effectiveness of sea ice in transferring momentum does not only depend on its resistive strength against the wind forcing but is also set by its top and bottom surface roughness varying with ice types and ice conditions. This reveals the need to account for sea ice surface roughness variations in climate simulations in order to correctly represent the implications of sea ice loss under global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major disjunctions among marine communities in southeastern Australia have been well documented, although explanations for biogeographic structuring remain uncertain. Converging ocean currents, environmental gradients, and habitat discontinuities have been hypothesized as likely drivers of structuring in many species, although the extent to which species are affected appears largely dependent on specific life histories and ecologies. Understanding these relationships is critical to the management of native and invasive species, and the preservation of evolutionary processes that shape biodiversity in this region. In this study we test the direct influence of ocean currents on the genetic structure of a passive disperser across a major biogeographic barrier. Donax deltoides (Veneroida: Donacidae) is an intertidal, soft-sediment mollusc and an ideal surrogate for testing this relationship, given its lack of habitat constraints in this region, and its immense dispersal potential driven by year-long spawning and long-lived planktonic larvae. We assessed allele frequencies at 10 polymorphic microsatellite loci across 11 sample locations spanning the barrier region and identified genetic structure consistent with the major ocean currents of southeastern Australia. Analysis of mitochondrial DNA sequence data indicated no evidence of genetic structuring, but signatures of a species range expansion corresponding with historical inundations of the Bassian Isthmus. Our results indicate that ocean currents are likely to be the most influential factor affecting the genetic structure of D. deltoides and a likely physical barrier for passive dispersing marine fauna generally in southeastern Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual Analytics (VA) is an approach to data analysis by means of visual manipulation of data representation, which relies on innate human abilities of perception and cognition. Even though current visual toolkits in the Business Analytics (BA) domain have improved the effectiveness of data exploration, analysis and reporting, their features are often not intuitive, and can be confusing and difficult to use. Moreover, visualizations generated from these toolkits are mostly accessible to specialist users. Thus, there is a need for analytic environments that support data exploration, interpretation and communication of insight that do not add to the cognitive load of the analyst and their non-technical clients. In this conceptual paper, we explore the potential of primary metaphors, which arise out of human lived and sensory-motor experiences, in the design of immersive visual analytics environments. Primary metaphors provide ideas for representation of time, space, quantity, similarity, actions and team work. Using examples developed in our own work, we also explain how to combine such metaphors to create complex and cognitively acceptable visual metaphors, such as 3D data terrains that approximate our intuition of reality and create opportunities for data to be viewed, navigated, explored, touched, changed, discussed, reported and described to others, individually or collaboratively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The third primary production algorithm round robin (PPARR3) compares output from 24 models that estimate depth-integrated primary production from satellite measurements of ocean color, as well as seven general circulation models (GCMs) coupled with ecosystem or biogeochemical models. Here we compare the global primary production fields corresponding to eight months of 1998 and 1999 as estimated from common input fields of photosynthetically-available radiation (PAR), sea-surface temperature (SST), mixed-layer depth, and chlorophyll concentration. We also quantify the sensitivity of the ocean-color-based models to perturbations in their input variables. The pair-wise correlation between ocean-color models was used to cluster them into groups or related output, which reflect the regions and environmental conditions under which they respond differently. The groups do not follow model complexity with regards to wavelength or depth dependence, though they are related to the manner in which temperature is used to parameterize photosynthesis. Global average PP varies by a factor of two between models. The models diverged the most for the Southern Ocean, SST under 10 degrees C, and chlorophyll concentration exceeding 1 mg Chlm(-3). Based on the conditions under which the model results diverge most, we conclude that current ocean-color-based models are challenged by high-nutrient low-chlorophyll conditions, and extreme temperatures or chlorophyll concentrations. The GCM-based models predict comparable primary production to those based on ocean color: they estimate higher values in the Southern Ocean, at low SST, and in the equatorial band, while they estimate lower values in eutrophic regions (probably because the area of high chlorophyll concentrations is smaller in the GCMs). Further progress in primary production modeling requires improved understanding of the effect of temperature on photosynthesis and better parameterization of the maximum photosynthetic rate. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time is ripe for a comprehensive mission to explore and document Earth's species. This calls for a campaign to educate and inspire the next generation of professional and citizen species explorers, investments in cyber-infrastructure and collections to meet the unique needs of the producers and consumers of taxonomic information, and the formation and coordination of a multi-institutional, international, transdisciplinary community of researchers, scholars and engineers with the shared objective of creating a comprehensive inventory of species and detailed map of the biosphere. We conclude that an ambitious goal to describe 10 million species in less than 50 years is attainable based on the strength of 250 years of progress, worldwide collections, existing experts, technological innovation and collaborative teamwork. Existing digitization projects are overcoming obstacles of the past, facilitating collaboration and mobilizing literature, data, images and specimens through cyber technologies. Charting the biosphere is enormously complex, yet necessary expertise can be found through partnerships with engineers, information scientists, sociologists, ecologists, climate scientists, conservation biologists, industrial project managers and taxon specialists, from agrostologists to zoophytologists. Benefits to society of the proposed mission would be profound, immediate and enduring, from detection of early responses of flora and fauna to climate change to opening access to evolutionary designs for solutions to countless practical problems. The impacts on the biodiversity, environmental and evolutionary sciences would be transformative, from ecosystem models calibrated in detail to comprehensive understanding of the origin and evolution of life over its 3.8 billion year history. The resultant cyber-enabled taxonomy, or cybertaxonomy, would open access to biodiversity data to developing nations, assure access to reliable data about species, and change how scientists and citizens alike access, use and think about biological diversity information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of subjective time have adopted different methods to understand different processes of time perception. Four sculptures, with implied movement ranked as 1.5-, 3.0-, 4.5-, and 6.0-point stimuli on the Body Movement Ranking Scale, were randomly presented to 42 university students untrained in visual arts and ballet. Participants were allowed to observe the images for any length of time (exploration time) and, immediately after each image was observed, recorded the duration as they perceived it. The results of temporal ratio (exploration time/time estimation) showed that exploration time of images also affected perception of time, i.e., the subjective time for sculptures representing implied movement were overestimated.\

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new Community Climate System Model, version 4 (CCSM4), provides a powerful tool to understand and predict the earth's climate system. Several aspects of the Southern Ocean in the CCSM4 are explored, including the surface climatology and interannual variability, simulation of key climate water masses (Antarctic Bottom Water, Subantarctic Mode Water, and Antarctic Intermediate Water), the transport and structure of the Antarctic Circumpolar Current, and interbasin exchange via the Agulhas and Tasman leakages and at the Brazil-Malvinas Confluence. It is found that the CCSM4 has varying degrees of accuracy in the simulation of the climate of the Southern Ocean when compared with observations. This study has identified aspects of the model that warrant further analysis that will result in a more comprehensive understanding of ocean-atmosphere-ice dynamics and interactions that control the earth's climate and its variability.