967 resultados para Multilevel Systems Model
Resumo:
This report details the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM), coupled mechanically to a flywheel and electrically to the power grid and to a local varying load). Both subsystems have been essentially described in previous reports (deliverables D 0.5 and D 4.3.1), although some previously unpublished details are presented here. The B2B is a variable structure system (VSS), due to the presence of control-actuated switches: however from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond-graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presents and coupled through a power-preserving interconnection, and the Hamiltonian description of the whole system is obtained; detailed bond-graphs of all the subsystems and the complete system are provided.
Resumo:
This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
Tämä diplomityö käsittelee työkaluja, jotka on suunniteltu kustannusten ennakointiin ja hinnan asetantaan. Aluksi on käyty läpi perinteisen ja toimintoperusteisen kustannuslaskennan perusteita. Näiden menetelmien välisiä eroja on tarkasteltu ja toimintoperusteisen kustannuslaskennan paremmin sopivuus nykypäivän yrityksille on perusteltu. Toisena käsitellään hinnoittelu. Hinnan merkitys, hinnoittelumenetelmät ja päätös lopullisesta hinnasta on käyty läpi. Hinnoittelun jälkeen esitellään kustannusjärjestelmät ja kustannusten arviointi. Nämä asiat todistavat, että tarkat kustannusarviot ovat elintärkeitä yritykselle. Tuotteen kustannusarviointi, hinnan asetanta ja tarjoaminen ovat erittäin merkityksellisiä asioita ottaen huomioon koko projektin elinkaaren ja tulevat tuotot. Nykyään on yleistä käyttää työkaluja kustannusarvioinnissa ja joskus myös hinnoittelussa. Työkalujen luotettavuus on tiedettävä, ennenkuin työkalut otetaan käyttöön. Myös työkalujen käyttäjät täytyy perehdyttää hyvin. Muuten yritys todennäköisesti kohtaa odottamattomia ja epämiellyttäviä yllätyksiä.
Resumo:
The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.
Resumo:
The aim of `Valssi' study was to find out the service requirements in `business-to-business' (B2B) markets and to present a new logistics service concept, where the traditional logistics service is expanded with significant manufacturing and value addedfacilities. The traditional third-party logistics service providers are not necessarily able to offer services, which cover widely the needs of potential customers. The study has been outlined to spare part markets in metal industry. In the second phase of the Valssi-project the aim is to examine the economical conditions and potentiality of the new logistics business concept. This research report (Part 1) concentrates on examining current trends in global and domestic logistics markets. Based on detailed survey among the participating companies, the study presents basis for a new logistics business concept model. The developed concept consists of 12 different service modules, which are split into deeper details of processes. The integration of worldwide supplier and service provider network together with customer companies systems is a challenge. The report focuses on evaluating the requirements for the new business concept from the customer-companies point of view. The study paints an overall picture of distribution and service provider network including an abstract about the software and system integration possibilities. As a result of the survey, it can be concluded that thereis need for the new business concept among the participating companies, and a modular service concept meets the requirements of them, because the new sophisticated concept considers the specialities involved in spare part logistics in metal industry.
Resumo:
The goal of this dissertation is to find and provide the basis for a managerial tool that allows a firm to easily express its business logic. The methodological basis for this work is design science, where the researcher builds an artifact to solve a specific problem. In this case the aim is to provide an ontology that makes it possible to explicit a firm's business model. In other words, the proposed artifact helps a firm to formally describe its value proposition, its customers, the relationship with them, the necessary intra- and inter-firm infrastructure and its profit model. Such an ontology is relevant because until now there is no model that expresses a company's global business logic from a pure business point of view. Previous models essentially take an organizational or process perspective or cover only parts of a firm's business logic. The four main pillars of the ontology, which are inspired by management science and enterprise- and processmodeling, are product, customer interface, infrastructure and finance. The ontology is validated by case studies, a panel of experts and managers. The dissertation also provides a software prototype to capture a company's business model in an information system. The last part of the thesis consists of a demonstration of the value of the ontology in business strategy and Information Systems (IS) alignment. Structure of this thesis: The dissertation is structured in nine parts: Chapter 1 presents the motivations of this research, the research methodology with which the goals shall be achieved and why this dissertation present a contribution to research. Chapter 2 investigates the origins, the term and the concept of business models. It defines what is meant by business models in this dissertation and how they are situated in the context of the firm. In addition this chapter outlines the possible uses of the business model concept. Chapter 3 gives an overview of the research done in the field of business models and enterprise ontologies. Chapter 4 introduces the major contribution of this dissertation: the business model ontology. In this part of the thesis the elements, attributes and relationships of the ontology are explained and described in detail. Chapter 5 presents a case study of the Montreux Jazz Festival which's business model was captured by applying the structure and concepts of the ontology. In fact, it gives an impression of how a business model description based on the ontology looks like. Chapter 6 shows an instantiation of the ontology into a prototype tool: the Business Model Modelling Language BM2L. This is an XML-based description language that allows to capture and describe the business model of a firm and has a large potential for further applications. Chapter 7 is about the evaluation of the business model ontology. The evaluation builds on literature review, a set of interviews with practitioners and case studies. Chapter 8 gives an outlook on possible future research and applications of the business model ontology. The main areas of interest are alignment of business and information technology IT/information systems IS and business model comparison. Finally, chapter 9 presents some conclusions.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
The aim of the study is to developa novel robust controller based on sliding mode control technique for the hydraulic servo system with flexible load and for a flexible manipulator with the lift and jib hydraulic actuators. For the purpose of general control design, a dynamic model is derived describing the principle physical behavior for both the hydraulic servo system and the flexible hydraulic manipulator. The mechanism of hydraulic servo systems is described by basic mathematical equations of fluid powersystems and the dynamics of flexible manipulator is modeled by the assumed modemethod. The controller is constructed so as to track desired trajectories in the presence of model imprecision. Experimental and simulation results demonstratethat sliding mode control has benefits which can be used to guarantee stabilityin uncertain systems and improve the system performance and load tolerance.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.
Resumo:
The evaluation of investments in advanced technology is one of the most important decision making tasks. The importance is even more pronounced considering the huge budget concerning the strategic, economic and analytic justification in order to shorten design and development time. Choosing the most appropriate technology requires an accurate and reliable system that can lead the decision makers to obtain such a complicated task. Currently, several Information and Communication Technologies (ICTs) manufacturers that design global products are seeking local firms to act as their sales and services representatives (called distributors) to the end user. At the same time, the end user or customer is also searching for the best possible deal for their investment in ICT's projects. Therefore, the objective of this research is to present a holistic decision support system to assist the decision maker in Small and Medium Enterprises (SMEs) - working either as individual decision makers or in a group - in the evaluation of the investment to become an ICT's distributor or an ICT's end user. The model is composed of the Delphi/MAH (Maximising Agreement Heuristic) Analysis, a well-known quantitative method in Group Support System (GSS), which is applied to gather the average ranking data from amongst Decision Makers (DMs). After that the Analytic Network Process (ANP) analysis is brought in to analyse holistically: it performs quantitative and qualitative analysis simultaneously. The illustrative data are obtained from industrial entrepreneurs by using the Group Support System (GSS) laboratory facilities at Lappeenranta University of Technology, Finland and in Thailand. The result of the research, which is currently implemented in Thailand, can provide benefits to the industry in the evaluation of becoming an ICT's distributor or an ICT's end user, particularly in the assessment of the Enterprise Resource Planning (ERP) programme. After the model is put to test with an in-depth collaboration with industrial entrepreneurs in Finland and Thailand, the sensitivity analysis is also performed to validate the robustness of the model. The contribution of this research is in developing a new approach and the Delphi/MAH software to obtain an analysis of the value of becoming an ERP distributor or end user that is flexible and applicable to entrepreneurs, who are looking for the most appropriate investment to become an ERP distributor or end user. The main advantage of this research over others is that the model can deliver the value of becoming an ERP distributor or end user in a single number which makes it easier for DMs to choose the most appropriate ERP vendor. The associated advantage is that the model can include qualitative data as well as quantitative data, as the results from using quantitative data alone can be misleading and inadequate. There is a need to utilise quantitative and qualitative analysis together, as can be seen from the case studies.
Resumo:
Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. BoxBehnken experimental design was employed as statistical tool to optimize the formulation variables, X1 (Cremophor® EL), X2 (Capmul® MCM-C8), and X3 (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X1, X2, and X3) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in td parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.
Resumo:
This thesis studies the transformation to utilizing e-business in corporate business activities. This transformation is called e-transformation. The transformation requires changes in both the IT infrastructure, as in the way things are done within the company. In this thesis the most focal needs for change are evaluated and solutions are suggested for the utilization of e-business at the corporate level. E-business sets demands to the corporate level management of customers, users and products. Also new kinds of demands are set to the IT systems used. A major practical problem in e-transformation is the growing need for the integration of corporate databases and information systems. In this thesis methods are sought to perform this integration. As an example, the challenges relating to the development of a CRM-system were examined. In this thesis the aim was to develop a model for an electronic portal with the help of which centralized electronic services can be offered to customers. In addition to the developed model, possible development phases were studied in the transformation to a portal as well as presenting a model of a multilevel portal.