806 resultados para Multifunctional landscape
Resumo:
There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.
Resumo:
Matrix metalloproteinases (MMPs) are a family of Zn2+-dependent endopeptidases targeting extracellular matrix (ECM) compounds as well as a number of other proteins. Their proteolytic activity acts as an effector mechanism of tissue remodeling in physiologic and pathologic conditions, and as modulator of inflammation. In the context of neuro-inflammatory diseases, MMPs have been implicated in processes such as (a) blood-brain barrier (BBB) and blood-nerve barrier opening, (b) invasion of neural tissue by blood-derived immune cells, (c) shedding of cytokines and cytokine receptors, and (d) direct cellular damage in diseases of the peripheral and central nervous system. This review focuses on the role of MMPs in multiple sclerosis (MS) and bacterial meningitis (BM), two neuro-inflammatory diseases where current therapeutic approaches are insufficient to prevent severe disability in the majority of patients. Inhibition of enzymatic activity may prevent MMP-mediated neuronal damage due to an overactive or deviated immune response in both diseases. Downregulation of MMP release may be the molecular basis for the beneficial effect of IFN-beta and steroids in MS. Instead, synthetic MMP inhibitors offer the possibility to shut off enzymatic activity of already activated MMPs. In animal models of MS and BM, they efficiently attenuated clinical disease symptoms and prevented brain damage due to excessive metalloproteinase activity. However, the required target profile for the therapeutic use of this novel group of compounds in human disease is not yet sufficiently defined and may be different depending on the type and stage of disease. Currently available MMP inhibitors show little target-specificity within the MMP family and may lead to side-effects due to interference with physiological functions of MMPs. Results from human MS and BM indicate that only a restricted number of MMPs specific for each disease is up-regulated. MMP inhibitors with selective target profiles offer the possibility of a more efficient therapy of MS and BM and may enter clinical trials in the near future.
Resumo:
Plant survival in alpine landscapes is constantly challenged by the harsh and often unpredictable environmental conditions. Steep environmental gradients and patchy distribution of habitats lead to small size and spatial isolation of populations and restrict gene flow. Agricultural land use has further increased the diversity of habitats below and above the treeline. We studied the consequences of the highly structured alpine landscape for evolutionary processes in four study plants: Epilobium fleischeri, Geum reptans, Campanula thyrsoides and Poa alpina. The main questions were: (1) How is genetic diversity distributed within and among populations and is it affected by altitude, population size or land use? (2) Do reproductive traits such as allocation to sexual or vegetative reproduction vary with altitude or land use? Furthermore, we studied if seed weight increases with altitude. Within-population genetic diversity of the four species was high and mostly not related to altitude and population size. Nevertheless, genetic differentiation among populations was pronounced and strongly increasing with distance. In Poa alpina genetic diversity was affected by land use. Results suggest considerable genetic drift among populations of alpine plants. Reproductive allocation was affected by altitude and land use in Poa alpina and by succession in Geum reptans. Seed weight was usually higher in alpine species than in related lowland species. We conclude that the evolutionary potential to respond to global change is mostly intact in alpine plants, even at high altitude. Phenotypic variability is shaped by adaptive as well as by random evolutionary processes; moreover plastic responses to growth conditions seem to be crucial for survival of plants in the alpine landscape.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, such as RNA metabolism, microRNA biogenesis and DNA repair. However, the precise role of FUS protein remains unclear. Recently, FUS has been linked to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS and that specifically depletes the protein. In order to characterize this cell line, we have performed a whole transcriptome analysis by RNA deep sequencing. Preliminary results show that FUS depletion affects both expression and alternative splicing levels of several RNAs. When FUS is depleted we observed 330 downregulated and 81 upregulated genes. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, to further characterize the FUS-depleted cell line we have performed growth proliferation and survival assays. From these experiments emerge that FUS-depleted cells display growth proliferation alteration. In order to explain this observation, we have tested different hypothesis (e.g. apoptosis, senescence or slow-down growth). We observed that FUS-depleted cells growth slower than controls. Currently, we are looking for putative candidate targets causing this phenotype. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.
Resumo:
Changes in fire occurrence during the last decades in the southern Swiss Alps make knowledge on fire history essential to understand future evolution of the ecosystem composition and functioning. In this context, palaeoecology provides useful insights into processes operating at decadal-to-millennial time scales, such as the response of plant communities to intensified fire disturbances during periods of cultural change. We provide a high-resolution macroscopic charcoal and pollen series from Guèr, a well-dated peat sequence at mid-elevation (832 m.a.s.l.) in southern Switzerland, where the presence of local settlements is documented since the late Bronze Age and the Iron Age. Quantitative fire reconstruction shows that fire activity sharply increased from the Neolithic period (1–3 episodes/1000 year) to the late Bronze and Iron Age (7–9 episodes/1000 year), leading to extensive clearance of the former mixed deciduous forest (Alnus glutinosa, Betula, deciduous Quercus). The increase in anthropogenic pollen indicators (e.g. Cerealia-type, Plantago lanceolata) together with macroscopic charcoal suggests anthropogenic rather than climatic forcing as the main cause of the observed vegetation shift. Fire and controlled burning were extensively used during the late Roman Times and early Middle Ages to promote the introduction and establishment of chestnut (Castanea sativa) stands, which provided an important wood and food supply. Fire occurrence declined markedly (from 9 to 5–6 episodes/1000 year) during late Middle Ages because of fire suppression, biomass removal by human population, and landscape fragmentation. Land-abandonment during the last decades allowed forest to partly re-expand (mainly Alnus glutinosa, Betula) and fire frequency to increase.
Resumo:
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.
Resumo:
Since 1987, Switzerland’s Federal Inventory of Mire Landscapes of Particular Beauty and National Importance has provided an instrument for the integration of nature conservation and landscape protection. Mires and mire landscape protection are strictly regulated. However, research results show that neither the goals of mire protection nor those of mire landscape protection are being achieved. The reasons for this are manifold and, in particular, have to do with a lack of coordination between the various policy areas that shape mire environments and mire landscapes. There are several key challenges involving different political and administrative levels. At the national level, mechanisms must be devised that enable differentiated regional implementation of national sectoral policies. In the context of cantonal structure planning, regional nature conservation and landscape protection priorities should be established based on existing regional potentials vis-à-vis the natural environment and landscapes (including protected biotopes and landscapes). At the regional level (spanning multiple communes), integrated planning instruments and governance structures should be developed so that implementation of national and cantonal sectoral policies may be harmonized under the umbrella of regional and integrated development plans. These adjustments to Switzerland’s institutional system are necessary to enable far-reaching integration of nature conservation and landscape protection when setting regional policy priorities. This would strengthen the protection of mire landscapes and other integrative instruments such as regional nature parks of national importance.
Resumo:
Three divalent transition metal complexes of 4,5-bis(2-pyridylmethylsulfanyl)-4‘,5‘-ethylenedithiotetrathiafulvalene have been prepared and crystallographically characterized. The isostructural Co(II) and the Ni(II) complexes show octahedral geometries around the metal ions with the coordination sites occupied by the pyridyl nitrogen atoms and the thioether sulfur atoms of the ligand and cis coordination of the halide ions. Cyclic voltammetry reveals that the complexation leads to a small anodic shift in the first oxidation potential of the TTF system.
Resumo:
M. Verdaguer