832 resultados para Multi-platform Xamarin Mobile-computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Syftet med denna studie är att undersöka fördröjningsskillnader inom användargränssnitt mellan native­utvecklade appar (utveckling till varje plattform) och appar av typen generated apps. Eftersom arbetet syftar till att bidra med information om prestanda ansågs en experimentell metod vara det bästa valet. Mätning av laddningstider gjordes med hjälp av en videokamera som filmade utförandet av experimenten vilket gjorde metoden simpel och liknar det som en användare kommer att uppleva. Avgränsning till plattformarna Android och iOS gjordes där Xamarin valdes som ramverk inom tekniker som skapar generated apps. Mätdata från experiment som undersökte laddningstider, experiment med användare som hanterade listors respons samt undersökning av CPU­ och minnesanvändning tyder på ett återkommande mönster. Xamarin Forms med XAML är den teknik som presterat sämst under experimenten som sedan följs av Xamarin Forms. Xamarin Android/iOS hade inte lika stora prestandaförluster jämfört med native­utvecklade delar. Generellt hanterar Xamarin Forms telefonens resurser sämre än vad Xamarin Android/iOS och native gör. Resultat från studien kan användas som beslutsstöd vid val av teknik. Studien bidrar även med data som kan användas vid vidare forskning inom området.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the complexity of parallel applications increase, the performance limitations resulting from computational load imbalance become dominant. Mapping the problem space to the processors in a parallel machine in a manner that balances the workload of each processors will typically reduce the run-time. In many cases the computation time required for a given calculation cannot be predetermined even at run-time and so static partition of the problem returns poor performance. For problems in which the computational load across the discretisation is dynamic and inhomogeneous, for example multi-physics problems involving fluid and solid mechanics with phase changes, the workload for a static subdomain will change over the course of a computation and cannot be estimated beforehand. For such applications the mapping of loads to process is required to change dynamically, at run-time in order to maintain reasonable efficiency. The issue of dynamic load balancing are examined in the context of PHYSICA, a three dimensional unstructured mesh multi-physics continuum mechanics computational modelling code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drowsy driving impairs motorists’ ability to operate vehicles safely, endangering both the drivers and other people on the road. The purpose of the project is to find the most effective wearable device to detect drowsiness. Existing research has demonstrated several options for drowsiness detection, such as electroencephalogram (EEG) brain wave measurement, eye tracking, head motions, and lane deviations. However, there are no detailed trade-off analyses for the cost, accuracy, detection time, and ergonomics of these methods. We chose to use two different EEG headsets: NeuroSky Mindwave Mobile (single-electrode) and Emotiv EPOC (14- electrode). We also tested a camera and gyroscope-accelerometer device. We can successfully determine drowsiness after five minutes of training using both single and multi-electrode EEGs. Devices were evaluated using the following criteria: time needed to achieve accurate reading, accuracy of prediction, rate of false positives vs. false negatives, and ergonomics and portability. This research will help improve detection devices, and reduce the number of future accidents due to drowsy driving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NOGUEIRA, Marcelo B. ; MEDEIROS, Adelardo A. D. ; ALSINA, Pablo J. Pose Estimation of a Humanoid Robot Using Images from an Mobile Extern Camera. In: IFAC WORKSHOP ON MULTIVEHICLE SYSTEMS, 2006, Salvador, BA. Anais... Salvador: MVS 2006, 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BECs) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of 4x10(5) quantum degenerate Rb-87 atoms every 1.6 s. Ensembles of 1 x 10(5) atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer-to-peer information sharing has fundamentally changed customer decision-making process. Recent developments in information technologies have enabled digital sharing platforms to influence various granular aspects of the information sharing process. Despite the growing importance of digital information sharing, little research has examined the optimal design choices for a platform seeking to maximize returns from information sharing. My dissertation seeks to fill this gap. Specifically, I study novel interventions that can be implemented by the platform at different stages of the information sharing. In collaboration with a leading for-profit platform and a non-profit platform, I conduct three large-scale field experiments to causally identify the impact of these interventions on customers’ sharing behaviors as well as the sharing outcomes. The first essay examines whether and how a firm can enhance social contagion by simply varying the message shared by customers with their friends. Using a large randomized field experiment, I find that i) adding only information about the sender’s purchase status increases the likelihood of recipients’ purchase; ii) adding only information about referral reward increases recipients’ follow-up referrals; and iii) adding information about both the sender’s purchase as well as the referral rewards increases neither the likelihood of purchase nor follow-up referrals. I then discuss the underlying mechanisms. The second essay studies whether and how a firm can design unconditional incentive to engage customers who already reveal willingness to share. I conduct a field experiment to examine the impact of incentive design on sender’s purchase as well as further referral behavior. I find evidence that incentive structure has a significant, but interestingly opposing, impact on both outcomes. The results also provide insights about senders’ motives in sharing. The third essay examines whether and how a non-profit platform can use mobile messaging to leverage recipients’ social ties to encourage blood donation. I design a large field experiment to causally identify the impact of different types of information and incentives on donor’s self-donation and group donation behavior. My results show that non-profits can stimulate group effect and increase blood donation, but only with group reward. Such group reward works by motivating a different donor population. In summary, the findings from the three studies will offer valuable insights for platforms and social enterprises on how to engineer digital platforms to create social contagion. The rich data from randomized experiments and complementary sources (archive and survey) also allows me to test the underlying mechanism at work. In this way, my dissertation provides both managerial implication and theoretical contribution to the phenomenon of peer-to-peer information sharing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One challenge on data assimilation (DA) methods is how the error covariance for the model state is computed. Ensemble methods have been proposed for producing error covariance estimates, as error is propagated in time using the non-linear model. Variational methods, on the other hand, use the concepts of control theory, whereby the state estimate is optimized from both the background and the measurements. Numerical optimization schemes are applied which solve the problem of memory storage and huge matrix inversion needed by classical Kalman filter methods. Variational Ensemble Kalman filter (VEnKF), as a method inspired the Variational Kalman Filter (VKF), enjoys the benefits from both ensemble methods and variational methods. It avoids filter inbreeding problems which emerge when the ensemble spread underestimates the true error covariance. In VEnKF this is tackled by resampling the ensemble every time measurements are available. One advantage of VEnKF over VKF is that it needs neither tangent linear code nor adjoint code. In this thesis, VEnKF has been applied to a two-dimensional shallow water model simulating a dam-break experiment. The model is a public code with water height measurements recorded in seven stations along the 21:2 m long 1:4 m wide flume’s mid-line. Because the data were too sparse to assimilate the 30 171 model state vector, we chose to interpolate the data both in time and in space. The results of the assimilation were compared with that of a pure simulation. We have found that the results revealed by the VEnKF were more realistic, without numerical artifacts present in the pure simulation. Creating a wrapper code for a model and DA scheme might be challenging, especially when the two were designed independently or are poorly documented. In this thesis we have presented a non-intrusive approach of coupling the model and a DA scheme. An external program is used to send and receive information between the model and DA procedure using files. The advantage of this method is that the model code changes needed are minimal, only a few lines which facilitate input and output. Apart from being simple to coupling, the approach can be employed even if the two were written in different programming languages, because the communication is not through code. The non-intrusive approach is made to accommodate parallel computing by just telling the control program to wait until all the processes have ended before the DA procedure is invoked. It is worth mentioning the overhead increase caused by the approach, as at every assimilation cycle both the model and the DA procedure have to be initialized. Nonetheless, the method can be an ideal approach for a benchmark platform in testing DA methods. The non-intrusive VEnKF has been applied to a multi-purpose hydrodynamic model COHERENS to assimilate Total Suspended Matter (TSM) in lake Säkylän Pyhäjärvi. The lake has an area of 154 km2 with an average depth of 5:4 m. Turbidity and chlorophyll-a concentrations from MERIS satellite images for 7 days between May 16 and July 6 2009 were available. The effect of the organic matter has been computationally eliminated to obtain TSM data. Because of computational demands from both COHERENS and VEnKF, we have chosen to use 1 km grid resolution. The results of the VEnKF have been compared with the measurements recorded at an automatic station located at the North-Western part of the lake. However, due to TSM data sparsity in both time and space, it could not be well matched. The use of multiple automatic stations with real time data is important to elude the time sparsity problem. With DA, this will help in better understanding the environmental hazard variables for instance. We have found that using a very high ensemble size does not necessarily improve the results, because there is a limit whereby additional ensemble members add very little to the performance. Successful implementation of the non-intrusive VEnKF and the ensemble size limit for performance leads to an emerging area of Reduced Order Modeling (ROM). To save computational resources, running full-blown model in ROM is avoided. When the ROM is applied with the non-intrusive DA approach, it might result in a cheaper algorithm that will relax computation challenges existing in the field of modelling and DA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choosing a single similarity threshold for cutting dendrograms is not sufficient for performing hierarchical clustering analysis of heterogeneous data sets. In addition, alternative automated or semi-automated methods that cut dendrograms in multiple levels make assumptions about the data in hand. In an attempt to help the user to find patterns in the data and resolve ambiguities in cluster assignments, we developed MLCut: a tool that provides visual support for exploring dendrograms of heterogeneous data sets in different levels of detail. The interactive exploration of the dendrogram is coordinated with a representation of the original data, shown as parallel coordinates. The tool supports three analysis steps. Firstly, a single-height similarity threshold can be applied using a dynamic slider to identify the main clusters. Secondly, a distinctiveness threshold can be applied using a second dynamic slider to identify “weak-edges” that indicate heterogeneity within clusters. Thirdly, the user can drill-down to further explore the dendrogram structure - always in relation to the original data - and cut the branches of the tree at multiple levels. Interactive drill-down is supported using mouse events such as hovering, pointing and clicking on elements of the dendrogram. Two prototypes of this tool have been developed in collaboration with a group of biologists for analysing their own data sets. We found that enabling the users to cut the tree at multiple levels, while viewing the effect in the original data, is a promising method for clustering which could lead to scientific discoveries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research studies the transformation from a single-sided offering to a multi-sided platform. The study aims to define platforms and their benefits, creating a theoretical framework by applying change management models with the platform theory, and by finding critical change points of the transformation. The empirical research was done by utilizing action research. The researcher worked as project manager in the case company, and studied the transformation project by working actively and leading the project team. The result of the project was a study of how the company would be able to manage the transformation. The results clearly showed that the company didn’t have the capabilities to finish the transformation. As a conclusion, the study showed that the critical change points that led to the project failure were, that the project was managed with insufficient change managerial efforts, which later resulted as lack of commitment to re-allocating the resources to complete the transformation. Many of the critical change points were results of combined change managerial and platform-related issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.