913 resultados para Multi-objective analysis
Resumo:
Speech signals degraded by additive noise can affects different applications in telecommunication. The noise may degrades the intelligibility of the speech signals and its waveforms as well. In some applications such as speech coding, both intelligibility and waveform quality are important but only intelligibility has been focused lastly. So, modern speech quality measurement techniques such as PESQ (Perceptual Evaluation of Speech Quality) have been used and classical distortion measurement techniques such as Cepstral Distance are becoming unused. In this paper it is shown that some classical distortion measures are still important in applications where speech corrupted by additive noise has to be evaluated.
Resumo:
This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present study introduces a multi-agent architecture designed for doing automation process of data integration and intelligent data analysis. Different from other approaches the multi-agent architecture was designed using a multi-agent based methodology. Tropos, an agent based methodology was used for design. Based on the proposed architecture, we describe a Web based application where the agents are responsible to analyse petroleum well drilling data to identify possible abnormalities occurrence. The intelligent data analysis methods used was the Neural Network.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Analysis of genomic data is increasingly becoming part of the livestock industry. Therefore, the routine collection of genomic information would be an invaluable resource for effective management of breeding programs in small, endangered populations. The objective of the paper was to demonstrate how genomic data could be used to analyse (1) linkage disequlibrium (LD), LD decay and the effective population size (NeLD); (2) Inbreeding level and effective population size (NeROH) based on runs of homozygosity (ROH); (3) Prediction of genomic breeding values (GEBV) using small within-breed and genomic information from other breeds. The Tyrol Grey population was used as an example, with the goal to highlight the potential of genomic analyses for small breeds. In addition to our own results we discuss additional use of genomics to assess relatedness, admixture proportions, and inheritance of harmful variants. The example data set consisted of 218 Tyrol Grey bull genotypes, which were all available AI bulls in the population. After standard quality control restrictions 34,581 SNPs remained for the analysis. A separate quality control was applied to determine ROH levels based on Illumina GenCall and Illumina GenTrain scores, resulting into 211 bulls and 33,604 SNPs. LD was computed as the squared correlation coefficient between SNPs within a 10 mega base pair (Mb) region. ROHs were derived based on regions covering at least 4, 8, and 16 Mb, suggesting that animals had common ancestors approximately 12, 6, and 3 generations ago, respectively. The corresponding mean inbreeding coefficients (F ROH) were 4.0% for 4 Mb, 2.9% for 8 Mb and 1.6% for 16 Mb runs. With an average generation interval of 5.66 years, estimated NeROH was 125 (NeROH>16 Mb), 186 (NeROH>8 Mb) and 370 (NeROH>4 Mb) indicating strict avoidance of close inbreeding in the population. The LD was used as an alternative method to infer the population history and the Ne. The results show a continuous decrease in NeLD, to 780, 120, and 80 for 100, 10, and 5 generations ago, respectively. Genomic selection was developed for and is working well in large breeds. The same methodology was applied in Tyrol Grey cattle, using different reference populations. Contrary to the expectations, the accuracy of GEBVs with very small within breed reference populations were very high, between 0.13-0.91 and 0.12-0.63, when estimated breeding values and deregressed breeding values were used as pseudo-phenotypes, respectively. Subsequent analyses confirmed the high accuracies being a consequence of low reliabilities of pseudo-phenotypes in the validation set, thus being heavily influenced by parent averages. Multi-breed and across breed reference sets gave inconsistent and lower accuracies. Genomic information may have a crucial role in management of small breeds, even if its primary usage differs from that of large breeds. It allows to assess relatedness between individuals, trends in inbreeding and to take decisions accordingly. These decisions would be based on the real genome architecture, rather than conventional pedigree information, which can be missing or incomplete. We strongly suggest the routine genotyping of all individuals that belong to a small breed in order to facilitate the effective management of endangered livestock populations.
Resumo:
This paper compares the effectiveness of the Tsallis entropy over the classic Boltzmann-Gibbs-Shannon entropy for general pattern recognition, and proposes a multi-q approach to improve pattern analysis using entropy. A series of experiments were carried out for the problem of classifying image patterns. Given a dataset of 40 pattern classes, the goal of our image case study is to assess how well the different entropies can be used to determine the class of a newly given image sample. Our experiments show that the Tsallis entropy using the proposed multi-q approach has great advantages over the Boltzmann-Gibbs-Shannon entropy for pattern classification, boosting image recognition rates by a factor of 3. We discuss the reasons behind this success, shedding light on the usefulness of the Tsallis entropy and the multi-q approach. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a structural damage detection methodology based on genetic algorithms and dynamic parameters. Three chromosomes are used to codify an individual in the population. The first and second chromosomes locate and quantify damage, respectively. The third permits the self-adaptation of the genetic parameters. The natural frequencies and mode shapes are used to formulate the objective function. A numerical analysis was performed for several truss structures under different damage scenarios. The results have shown that the methodology can reliably identify damage scenarios using noisy measurements and that it results in only a few misidentified elements. (C) 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
Resumo:
Given the social and territorial features described in feral cats, it is commonly assumed that life in multi-cat households is stressful for domestic cats and suggested that cats kept as single pets are likely to have better welfare. On the other hand, it has been hypothesized that under high densities cats can organize themselves socially thus preventing stress when spatial dispersion is unavailable. This study was aimed at comparing the general arousal underpinning emotional distress in single housed cats and in cats from multi-cat households (2 and 3–4 cats) on the basis of fecal glucocorticoid metabolites (GCM) measured via enzyme immunoassay (EIA). GCM did not significantly vary as a function of living style (single, double or group-housing); highly stressed individuals were equally likely in the three groups. Young cats in multi-cat households had lower GCM, and overall cats that tolerate (as opposed to dislike) petting by the owners tended to have higher GCM levels. Other environmental aspects within cat houses (e.g. relationship with humans, resource availability) may play a more important role in day to day feline arousal levels than the number of cats per se
Resumo:
This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL) was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL) was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.
Resumo:
This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.
Resumo:
This Doctoral Thesis focuses on the study of individual behaviours as a result of organizational affiliation. The objective is to assess the Entrepreneurial Orientation of individuals proving the existence of a set of antecedents to that measure returning a structural model of its micro-foundation. Relying on the developed measurement model, I address the issue whether some Entrepreneurs experience different behaviours as a result of their academic affiliation, comparing a sample of ‘Academic Entrepreneurs’ to a control sample of ‘Private Entrepreneurs’ affiliated to a matched sample of Academic Spin-offs and Private Start-ups. Building on the Theory of the Planned Behaviour, proposed by Ajzen (1991), I present a model of causal antecedents of Entrepreneurial Orientation on constructs extensively used and validated, both from a theoretical and empirical perspective, in sociological and psychological studies. I focus my investigation on five major domains: (a) Situationally Specific Motivation, (b) Personal Traits and Characteristics, (c) Individual Skills, (d) Perception of the Business Environment and (e) Entrepreneurial Orientation Related Dimensions. I rely on a sample of 200 Entrepreneurs, affiliated to a matched sample of 72 Academic Spin-offs and Private Start-ups. Firms are matched by Industry, Year of Establishment and Localization and they are all located in the Emilia Romagna region, in northern Italy. I’ve gathered data by face to face interviews and used a Structural Equation Modeling technique (Lisrel 8.80, Joreskog, K., & Sorbom, D. 2006) to perform the empirical analysis. The results show that Entrepreneurial Orientation is a multi-dimensional micro-founded construct which can be better represented by a Second-Order Model. The t-tests on the latent means reveal that the Academic Entrepreneurs differ in terms of: Risk taking, Passion, Procedural and Organizational Skills, Perception of the Government, Context and University Supports. The Structural models also reveal that the main differences between the two groups lay in the predicting power of Technical Skills, Perceived Context Support and Perceived University Support in explaining the Entrepreneurial Orientation Related Dimensions.
Resumo:
As distributed collaborative applications and architectures are adopting policy based management for tasks such as access control, network security and data privacy, the management and consolidation of a large number of policies is becoming a crucial component of such policy based systems. In large-scale distributed collaborative applications like web services, there is the need of analyzing policy interactions and integrating policies. In this thesis, we propose and implement EXAM-S, a comprehensive environment for policy analysis and management, which can be used to perform a variety of functions such as policy property analyses, policy similarity analysis, policy integration etc. As part of this environment, we have proposed and implemented new techniques for the analysis of policies that rely on a deep study of state of the art techniques. Moreover, we propose an approach for solving heterogeneity problems that usually arise when considering the analysis of policies belonging to different domains. Our work focuses on analysis of access control policies written in the dialect of XACML (Extensible Access Control Markup Language). We consider XACML policies because XACML is a rich language which can represent many policies of interest to real world applications and is gaining widespread adoption in the industry.