990 resultados para Multi-GPU Rendering
Resumo:
Climate change impact assessment studies involve downscaling large-scale atmospheric predictor variables (LSAPVs) simulated by general circulation models (GCMs) to site-scale meteorological variables. This article presents a least-square support vector machine (LS-SVM)-based methodology for multi-site downscaling of maximum and minimum daily temperature series. The methodology involves (1) delineation of sites in the study area into clusters based on correlation structure of predictands, (2) downscaling LSAPVs to monthly time series of predictands at a representative site identified in each of the clusters, (3) translation of the downscaled information in each cluster from the representative site to that at other sites using LS-SVM inter-site regression relationships, and (4) disaggregation of the information at each site from monthly to daily time scale using k-nearest neighbour disaggregation methodology. Effectiveness of the methodology is demonstrated by application to data pertaining to four sites in the catchment of Beas river basin, India. Simulations of Canadian coupled global climate model (CGCM3.1/T63) for four IPCC SRES scenarios namely A1B, A2, B1 and COMMIT were downscaled to future projections of the predictands in the study area. Comparison of results with those based on recently proposed multivariate multiple linear regression (MMLR) based downscaling method and multi-site multivariate statistical downscaling (MMSD) method indicate that the proposed method is promising and it can be considered as a feasible choice in statistical downscaling studies. The performance of the method in downscaling daily minimum temperature was found to be better when compared with that in downscaling daily maximum temperature. Results indicate an increase in annual average maximum and minimum temperatures at all the sites for A1B, A2 and B1 scenarios. The projected increment is high for A2 scenario, and it is followed by that for A1B, B1 and COMMIT scenarios. Projections, in general, indicated an increase in mean monthly maximum and minimum temperatures during January to February and October to December.
Resumo:
The tunable optical properties of the bulk structure of carbon nanotubes (CNT) were recently revealed as a perfect black body material, optically reflective mirror and solar absorber. The present study demonstrates an enhanced optical reflectance of up to similar to 15% over a broad wavelength range in the near infrared region followed by a mechanical modification of the surface of a bulk CNT structure, which can be accounted for due to the grating-like surface abnormalities. In response to the specific arrangement of the so-formed bent tips of the CNT, a selective reflectance is achieved and results in reflecting only a dominant component of the polarized ight, which has not been realized so far. Modulation of this selective-optical reflectance can be achieved by ontrolling the degree of tip bending of the nanotubes, thus opening up avenues for the construction of novel dynamic light polarizers and absorbers.
Resumo:
The general procedure for synthesizing the rack and pinion mechanism up to seven precision conditions is developed. To illustrate the method, the mechanism has been synthesized in closed form for three precision conditions of path generation, two positions of function generation, and a velocity condition at one of the precision points. This mechanism has a number of advantages over conventional four bar mechanisms. First, since the rack is always tangent to the pinion, the transmission angle is always 90 deg minus the pressure angle of the rack. Second, with both translation and rotation of the rack occurring, multiple outputs are available. Other advantages include the generation of monotonic functions for a wide variety of motion and nonmonotonic functions for a full range of motion as well as nonlinear amplified motions. In this work the mechanism is made to satisfy a number of practical design requirements such as completely rotatable input crank and others. By including the velocity specification, the designer has considerably more control of the output motion. The method of solution developed in this work uses the complex number method of mechanism synthesis. A numerical example is included.
Resumo:
Head pose classification from surveillance images acquired with distant, large field-of-view cameras is difficult as faces are captured at low-resolution and have a blurred appearance. Domain adaptation approaches are useful for transferring knowledge from the training (source) to the test (target) data when they have different attributes, minimizing target data labeling efforts in the process. This paper examines the use of transfer learning for efficient multi-view head pose classification with minimal target training data under three challenging situations: (i) where the range of head poses in the source and target images is different, (ii) where source images capture a stationary person while target images capture a moving person whose facial appearance varies under motion due to changing perspective, scale and (iii) a combination of (i) and (ii). On the whole, the presented methods represent novel transfer learning solutions employed in the context of multi-view head pose classification. We demonstrate that the proposed solutions considerably outperform the state-of-the-art through extensive experimental validation. Finally, the DPOSE dataset compiled for benchmarking head pose classification performance with moving persons, and to aid behavioral understanding applications is presented in this work.
Resumo:
This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.
Resumo:
We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H2SO4. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Human Leukocyte Antigen (HLA) plays an important role, in presenting foreign pathogens to our immune system, there by eliciting early immune responses. HLA genes are highly polymorphic, giving rise to diverse antigen presentation capability. An important factor contributing to enormous variations in individual responses to diseases is differences in their HLA profiles. The heterogeneity in allele specific disease responses decides the overall disease epidemiological outcome. Here we propose an agent based computational framework, capable of incorporating allele specific information, to analyze disease epidemiology. This framework assumes a SIR model to estimate average disease transmission and recovery rate. Using epitope prediction tool, it performs sequence based epitope detection for a given the pathogenic genome and derives an allele specific disease susceptibility index depending on the epitope detection efficiency. The allele specific disease transmission rate, that follows, is then fed to the agent based epidemiology model, to analyze the disease outcome. The methodology presented here has a potential use in understanding how a disease spreads and effective measures to control the disease.
Resumo:
Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background: The function of a protein can be deciphered with higher accuracy from its structure than from its amino acid sequence. Due to the huge gap in the available protein sequence and structural space, tools that can generate functionally homogeneous clusters using only the sequence information, hold great importance. For this, traditional alignment-based tools work well in most cases and clustering is performed on the basis of sequence similarity. But, in the case of multi-domain proteins, the alignment quality might be poor due to varied lengths of the proteins, domain shuffling or circular permutations. Multi-domain proteins are ubiquitous in nature, hence alignment-free tools, which overcome the shortcomings of alignment-based protein comparison methods, are required. Further, existing tools classify proteins using only domain-level information and hence miss out on the information encoded in the tethered regions or accessory domains. Our method, on the other hand, takes into account the full-length sequence of a protein, consolidating the complete sequence information to understand a given protein better. Results: Our web-server, CLAP (Classification of Proteins), is one such alignment-free software for automatic classification of protein sequences. It utilizes a pattern-matching algorithm that assigns local matching scores (LMS) to residues that are a part of the matched patterns between two sequences being compared. CLAP works on full-length sequences and does not require prior domain definitions. Pilot studies undertaken previously on protein kinases and immunoglobulins have shown that CLAP yields clusters, which have high functional and domain architectural similarity. Moreover, parsing at a statistically determined cut-off resulted in clusters that corroborated with the sub-family level classification of that particular domain family. Conclusions: CLAP is a useful protein-clustering tool, independent of domain assignment, domain order, sequence length and domain diversity. Our method can be used for any set of protein sequences, yielding functionally relevant clusters with high domain architectural homogeneity. The CLAP web server is freely available for academic use at http://nslab.mbu.iisc.ernet.in/clap/.
Resumo:
A lithium-ion hybrid capacitor comprising of a battery type multi-component olivine (LiMn1/3Co1/3Ni1/3PO4) cathode and a capacitive type carbon negative electrode is reported. Olivine phosphate synthesized with chelating agent's polyvinylpyrrolidone (PVP) or triethanolamine (TEA) showed uniform carbon coating through in-situ process exhibiting a surface area 5.1 m(2)/g with porosity 0.02 cm(3)/g. The surface area for commercial carbon electrode was observed to be 1450 m(2)/g with high porosity 0.76 cm(3)/g. Galvanostatic charge/discharge cycling tests were conducted in the coin cells, olivine vs. Li, offering a cell voltage of 4.75 V vs. Li with a maximum specific capacitance of 125 F/g. In the case of olivine vs. carbon in a lithium-ion hybrid device delivered a high discharge capacitance of 86 F/g at a specific current of 0.12 A/g with a cycling retention of 53 F/g (38% loss) after 250 cycles. The obtained performance of PVP synthesized olivine material is manifested to uniform carbon coating and the trapped organic products that provide pathways for facile electrochemical reactions than their TEA counterparts.
Resumo:
Grating Compression Transform (GCT) is a two-dimensional analysis of speech signal which has been shown to be effective in multi-pitch tracking in speech mixtures. Multi-pitch tracking methods using GCT apply Kalman filter framework to obtain pitch tracks which requires training of the filter parameters using true pitch tracks. We propose an unsupervised method for obtaining multiple pitch tracks. In the proposed method, multiple pitch tracks are modeled using time-varying means of a Gaussian mixture model (GMM), referred to as TVGMM. The TVGMM parameters are estimated using multiple pitch values at each frame in a given utterance obtained from different patches of the spectrogram using GCT. We evaluate the performance of the proposed method on all voiced speech mixtures as well as random speech mixtures having well separated and close pitch tracks. TVGMM achieves multi-pitch tracking with 51% and 53% multi-pitch estimates having error <= 20% for random mixtures and all-voiced mixtures respectively. TVGMM also results in lower root mean squared error in pitch track estimation compared to that by Kalman filtering.
Resumo:
We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenability as high as 0.68nm/mu N. and it is capable of tuning up to 1.7nm.
Resumo:
This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, vegetation,. and fallow regions). The road regions are then extracted using the normalized cuts algorithm. Normalized cuts algorithm is a graph-based partitioning `approach whose focus lies in extracting the global impression (perceptual grouping) of an image rather than local features. For the segmented image, post-processing is carried out using morphological operations - erosion and dilation. Finally, the road extracted image is overlaid on the original image. Here, a GPGPU (General Purpose Graphical Processing Unit) approach has been adopted to implement the same algorithm on the GPU for fast processing. A performance comparison of this proposed GPU implementation of normalized cuts algorithm with the earlier algorithm (CPU implementation) is presented. From the results, we conclude that the computational improvement in terms of time as the size of image increases for the proposed GPU implementation of normalized cuts. Also, a qualitative and quantitative assessment of the segmentation results has been projected.
Resumo:
Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS) and stages from Envisat radar altimetry. Surface water storage variations over 2003-2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95), the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73) after removing seasonal effects. Mean annual variations in surface water volume represented similar to 170 km(3), contributing to similar to 45% of the Gravity Recovery and Climate Experiment (GRACE)-derived total water storage variations and representing similar to 13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.
Resumo:
We have developed a real-time imaging method for two-color wide-field fluorescence microscopy using a combined approach that integrates multi-spectral imaging and Bayesian image reconstruction technique. To enable simultaneous observation of two dyes (primary and secondary), we exploit their spectral properties that allow parallel recording in both the channels. The key advantage of this technique is the use of a single wavelength of light to excite both the primary dye and the secondary dye. The primary and secondary dyes respectively give rise to fluorescence and bleed-through signal, which after normalization were merged to obtain two-color 3D images. To realize real-time imaging, we employed maximum likelihood (ML) and maximum a posteriori (MAP) techniques on a high-performance computing platform (GPU). The results show two-fold improvement in contrast while the signal-to-background ratio (SBR) is improved by a factor of 4. We report a speed boost of 52 and 350 for 2D and 3D images respectively. Using this system, we have studied the real-time protein aggregation in yeast cells and HeLa cells that exhibits dot-like protein distribution. The proposed technique has the ability to temporally resolve rapidly occurring biological events.