947 resultados para Motor third-party liability insurance
Resumo:
P>Objective To evaluate the influence of apical size on cleaning of the apical third of curved canals prepared with rotary instruments. Methodology Forty-four mesiobuccal canals of maxillary molars teeth were instrumented to different apical sizes (30, 0.02; 35, 0.02; 40, 0.02; 45, 0.02) using a crown-down technique. After canal preparation, the apical thirds of the roots were submitted to histological processing and examination. The specimens were analysed at 40x magnification and the images were submitted to morphometric analysis with an integration grid to evaluate the percentage of debris and uninstrumented root canal walls. The action of the instruments on the root canal walls was assessed based on the surface regularity, abrupt change on the continuity of root canal walls, and partial or total pre-dentine removal. The results were statistically compared using one-way anova with post hoc Tukey test. Pearson`s correlation was performed to identify potential correlations between values. Results The percentage of uninstrumented root canal dentine was higher when apical enlargement was performed with instruments 30, 0.02 taper (55.64 +/- 4.62%) and 35, 0.02 taper (49.03 +/- 5.70%) than with instruments 40, 0.02 taper (38.08 +/- 10.44%) and 45, 0.02 taper (32.65 +/- 8.51%) (P < 0.05). More debris were observed when apical enlargement was performed with instruments 30, 0.02 taper (34.62 +/- 9.49%) and 35, 0.02 taper (25.33 +/- 7.37%) (P < 0.05). There was a significant correlation between the amount of remaining debris and the perimeter of uninstrumented root canal dentine (r = 0.9130, P < 0.001). Conclusion No apical enlargement size allowed the root canal walls to be prepared completely. Apical third cleanliness could be predicted by instrument diameter.
Resumo:
This is a study in the rat of the distribution of specific neurotransmitters in neurones projecting from the substantia nigra reticulata (SNR) to the ventrolateral (VL) and ventromedial (VM) thalamic nuclei. Individual axons projecting from the SNR to these thalamic nuclei have also been reconstructed following small injection of the anterograde tracer dextran biotin into the the SNR. Analysis of reconstructions revealed two populations of SNR neurones projecting onto the VL and VM thalamic nuclei. One group projects directly onto the VM and VL, and the other projects to the VM/VL and to the parafascicular nucleus. In another set of experiments Fluoro-Gold was injected into the VL/VM to label SNR projection neurones retrogradely, and immunohistochemistry was performed to determine the distribution of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), gamma -aminobutyric acid (GABA), and glutamate in Fluoro-Gold-labelled SNR projection neurones. Most SNR-VL/VM thalamic projection neurones were immunoreactive to acetylcholine or glutamate, whereas only 25% of the projection neurones were found to be immunoreactive to GABA. (C) 2001 Wiley-Liss, Inc.
Resumo:
Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder. (C) 2001 by the American Pain Society.
Resumo:
Recent findings that spinal manual therapy (SMT) produces concurrent hypoalgesic and sympathoexcitatory effects have led to the proposal that SMT may exert its initial effects by activating descending inhibitory pathways from the dorsal periaqueductal gray area of the midbrain (dPAG). In addition to hypoalgesic and sympathoexcitatory effects, stimulation of the dPAG in animals has been shown to hal e a facilitatory effect on motor activity. This study sought to further investigate the proposal regarding SMT and the FAG by including a test of motor function in addition to the variables previously investigated, Using a condition randomised, placebo-controlled, double blind, repeated measures design, 30 subjects with mid to lon er cervical spine pain of insidious onset participated in the study. The results indicated that the cervical mobilisation technique produced a hypoalgesic effect as revealed by increased pressure pain thresholds on the side of treatment (P = 0.0001) and decreased resting visual analogue scale scores (P = 0.049). The treatment technique also produced a sympathoexcitatory effect with an increase in skin conductance (P < 0.002) and a decrease in skin temperature (P = < 0.02). There was a decrease in superficial neck flexor muscle activity (P < 0.0002) at the lower levels of a staged cranio-cervical flexion test. This could imply facilitation of the deep neck flexor muscles with a decreased need for co-activation of the superficial neck flexors, The combination of all findings,would support the proposal that SMT may, at least initially, exert part of its influence via activation of the PAG, (C) 2000 Harcourt Publishers Ltd.
Resumo:
Changes in trunk muscle recruitment have been identified in people with low-back pain (LBP). These differences may be due to changes in the planning of the motor response or due to delayed transmission of the descending motor command in the nervous system. These two possibilities were investigated by comparison of the effect of task complexity on the feedforward postural response of the trunk muscles associated with rapid arm movement in people with and without LBP. Task complexity was increased by variation of the expectation for a command to either abduct or flex the upper limb. The onsets of electromyographic activity (EMG) of the abdominal and deltoid muscles were measured. In control subjects, while the reaction time of deltoid and the superficial abdominal muscles increased with task complexity, the reaction time of transversus abdominis (TrA) was constant. However, in subjects with LBP, the reaction time of TrA increased along with the other muscles as task complexity was increased. While inhibition of the descending motor command cannot be excluded, it is more likely that the change in recruitment M of TrA represents a more complex change in organisation of the postural response.