996 resultados para Motion Compensation
Resumo:
Long reach passive optical networks (LR-PONs), which integrate fibre-to-the-home with metro networks, have been the subject of intensive research in recent years and are considered one of the most promising candidates for the next generation of optical access networks. Such systems ideally have reaches greater than 100km and bit rates of at least 10Gb/s per wavelength in the downstream and upstream directions. Due to the limited equipment sharing that is possible in access networks, the laser transmitters in the terminal units, which are usually the most expensive components, must be as cheap as possible. However, the requirement for low cost is generally incompatible with the need for a transmitter chirp characteristic that is optimised for such long reaches at 10Gb/s, and hence dispersion compensation is required. In this thesis electronic dispersion compensation (EDC) techniques are employed to increase the chromatic dispersion tolerance and to enhance the system performance at the expense of moderate additional implementation complexity. In order to use such EDC in LR-PON architectures, a number of challenges associated with the burst-mode nature of the upstream link need to be overcome. In particular, the EDC must be made adaptive from one burst to the next (burst-mode EDC, or BM-EDC) in time scales on the order of tens to hundreds of nanoseconds. Burst-mode operation of EDC has received little attention to date. The main objective of this thesis is to demonstrate the feasibility of such a concept and to identify the key BM-EDC design parameters required for applications in a 10Gb/s burst-mode link. This is achieved through a combination of simulations and transmission experiments utilising off-line data processing. The research shows that burst-to-burst adaptation can in principle be implemented efficiently, opening the possibility of low overhead, adaptive EDC-enabled burst-mode systems.
Resumo:
The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.
Resumo:
This dissertation investigates the concept of motion as a fundamental aesthetic element in the devotional music, dance, and rituals performed in honor of the celebrated thirteenth-century Persian mystic poet and saint, the Mevlana Celal ed-Din Muhammad Rumi. The main focus of the study is threefold. First, it investigates the prevalence of the notion of movement in Islamic music and culture, specifically within the Sufi communities of Turkey, in order to arrive at a broader understanding of the relationship between music, aesthetics, and worldview. Secondly, it explores how musical performance functions as a form of devotion or religious worship by focusing on the musical repertories performed in honor of a single holy figure, the Mevlana Rumi. Finally, it provides an ethnographic account of contemporary developments in Sufi musical culture in Turkey and across the world by describing the recent activities of the Mevlana's devotees, which includes members of the Mevlevi Order of Islamic mystics as well as adherents of other Sufi brotherhoods and followers of so-called New Religions or New Age. The primary research for this study involved two short one-month field trips to Turkey and India in 2002 and 2003, respectively, and a longer one year expedition to Turkey in 2004 and 2005, which also included shorter stays in Cyprus, Syria, and Egypt. Additionally, the dissertation draws directly from critical theories advanced in the fields of ethnomusicology, cultural anthropology, and ethnochoreology and focuses on the kinesthetic parameters of music, dance, trance, and ritual as well as on broader forms of socio-cultural movement including pilgrimage, cultural tourism, and globalization. These forms of movement are analyzed in four broad categories of music used in worship, including classical Mevlevi music, music of the zikr ceremony, popular musics, and non-Turkish musics.
Resumo:
Thesis
Resumo:
PURPOSE: A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. THEORY: Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. METHODS: The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. RESULTS: Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. CONCLUSION: POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.
Resumo:
Gemstone Team AMIRA
Resumo:
A collection of poetry
Resumo:
Context. This paper is the last in a series devoted to the analysis of the binary content of the Hipparcos Catalogue. Aims. The comparison of the proper motions constructed from positions spanning a short (Hipparcos) or long time (Tycho-2) makes it possible to uncover binaries with periods of the order of or somewhat larger than the short time span (in this case, the 3 yr duration of the Hipparcos mission), since the unrecognised orbital motion will then add to the proper motion. Methods. A list of candidate proper motion binaries is constructed from a carefully designed χ2 test evaluating the statistical significance of the difference between the Tycho-2 and Hipparcos proper motions for 103 134 stars in common between the two catalogues (excluding components of visual systems). Since similar lists of proper-motion binaries have already been constructed, the present paper focuses on the evaluation of the detection efficiency of proper-motion binaries, using different kinds of control data (mostly radial velocities). The detection rate for entries from the Ninth Catalogue of Spectroscopic Binary Orbits (SB9) is evaluated, as well as for stars like barium stars, which are known to be all binaries, and finally for spectroscopic binaries identified from radial velocity data in the Geneva-Copenhagen survey of F and G dwarfs in the solar neighbourhood. Results. Proper motion binaries are efficiently detected for systems with parallaxes in excess of ∼20 mas, and periods in the range 1000-30 000 d. The shortest periods in this range (1000-2000 d, i.e. once to twice the duration of the Hipparcos mission) may appear only as DMSA/G binaries (accelerated proper motion in the Hipparcos Double and Multiple System Annex). Proper motion binaries detected among SB9 systems having periods shorter than about 400 d hint at triple systems, the proper-motion binary involving a component with a longer orbital period. A list of 19 candidate triple systems is provided. Binaries suspected of having low-mass (brown-dwarf-like) companions are listed as well. Among the 37 barium stars with parallaxes larger than 5 mas, only 7 exhibit no evidence for duplicity whatsoever (be it spectroscopic or astrometric). Finally, the fraction of proper-motion binaries shows no significant variation among the various (regular) spectral classes, when due account is taken for the detection biases. © ESO 2007.
Resumo:
Solder is often used as an adhesive to attach optical fibers to a circuit board. In this proceeding we will discuss efforts to model the motion of an optical fiber during the wetting and solidification of the adhesive solder droplet. The extent of motion is determined by several competing forces, during three “stages” of solder joint formation. First, capillary forces of the liquid phase control the fiber position. Second, during solidification, the presence of the liquid-solid-vapor triple line as well as a reduced liquid solder volume leads to a change in the net capillary force on the optical fiber. Finally, the solidification front itself impinges on the fiber. Publicly-available finite element models are used to calculate the time-dependent position of the solidification front and shape of the free surface.
Resumo:
Professor Ed Galea CEng, MIFireE provides a welcome to Pedestrian and Evacuation Dynamics 2003, (PED 2003) to be held in London on 20-22 August 2003.
Resumo:
Design of differential amplifier with high gain accuracy and high linearity is presented in the paper. The amplifier design is based on the negative impedance compensation technique reported by the authors in [1]. A negative impedance with high precision, low sensitivity, wide input signal range and simple structure is used for the compensation of differential amplifier. Analysis and simulation results show that gain accuracy and linearity can be improved significantly with the negative impedance compensation
Resumo:
A novel amplifier design technique based on negative impedance compensation has been proposed in our recent paper. In this paper, we investigate the stability of this amplifier system. The parameter space approach has been used to determine system parameters in the negative impedance circuit such that the stability of the amplifier system can be guaranteed in a certain region represented by those parameters. The simulation results have demonstrated that stable circuit behavior for the amplifier can be achieved
Resumo:
Investment treaties, and possibly the EU Treaty itself, are being used by multinational companies Penta and Eureko to try and force the Slovak government to pay compensation for reversing health privatisation and liberalisation policies. Similar action has been used against the Polish government by Eureko to win compensation worth nearly 2 billion Euros and a policy commitment to further privatisation.