978 resultados para Montmorillonite Clays


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altered basalt dikes from Hole 504B were partially melted at 1150°C and 1180°C to determine the composition of the first melts as oceanic Layer 2C is assimilated by a magma chamber. The partial melts are chemically similar to actinolite, the most abundant secondary mineral, but the melts are not simply melted actinolite. High TiO2, P2O5, and K2O abundances of the melts indicate that minor secondary minerals that are enriched in these elements also contribute to the melt. The incorporation of partial melts into a ridge-crest magma chamber may explain the local variability that is sometimes found in ocean ridge basalts that are not readily explained fractional crystallization or partial melting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A record of changes in Pb and Sr isotopic composition of two cores (DSDP 86-576A and LL44- GPC-3) from the red clay region of the central North Pacific has been determined for the past 60-65 million years. The isotope records of the eolian silicate fraction of the red clays reflect the change in source area as the core sites migrated under different wind systems. The Sr isotope compositions of eolian silicate material are consistent with Asian loess and North American arc volcanism that has been recognized from mineralogical studies. The silicate-bound eolian Pb isotopic compositions similarly reflect Asian loess and arc volcanism. The isotope records of three ferromanganese crusts from similar locations in the central Pacific are similar to the eolian component of red clays, but offset to less radiogenic values. This may be due to two mechanisms: (1) Pb that can be removed from eolian material by seawater is much less radiogenic, or less likely (2) hydrothermal Pb can be transported further away from venting sites through particle exchange with seawater, despite hydrothermal venting acting as a net sink of oceanic Pb. The temporal changes in Pb isotopes in the ferromanganese crusts, bulk red clays and eolian silicates are similar although offset from each other suggesting that eolian deposition is an important source of Pb to seawater and to ferromanganese crusts. This contrasts with the Atlantic and Southern Ocean where more intense deep water flow leads to isotopic gradients in FeMn crusts that do not reflect surface water conditions immediately above the crust. A mechanism is proposed which accounts for Pacific deepwater Pb being isotopically influenced by eolian deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationships between mineralogical and geochemical data on the three successive sedimentary facies at Deep Sea Drilling Project Site 464 are studied. The evolution of siliceous biogenic sediments is derived from the analyses of one Fe-Ti smectite concretion, and of siliceous aggregates occurring in the pelagic "brown clays." Along the sedimentary section, the trace elements enriching the authigenic silicates and the Fe-Mn oxyhydroxides vary, depending on the marine environment. The proportion of clays and carbonates into the siliceous deposits controls the diagenetic evolution of silica making up the quartz aggregates from the "brown clay" or the cristobalite cherts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabric of sediments recovered at sites drilled on the Indus Fan, Owen Ridge, and Oman margin during Ocean Drilling Program Leg 117 was examined by scanning electron microscopy to document changes that accompany sediment burial. Two sediment types were studied: (1) biogenic sediments consisting of a variety of marly nannofossil and nannofossil oozes and chalks and (2) terrigenous sediments consisting of fine-grained turbidites deposited in association with the Indus Fan. Biogenic sediments were examined with samples from the seafloor to depths of 306 m below seafloor (mbsf) on the Owen Ridge (Site 722) and 368 mbsf on the Oman margin (Sites 723 and 728). Over these depth ranges the biogenic sediments are characterized by a random arrangement of microfossils and display little chemical diagenetic alteration. The microfossils are dispersed within a fine-grained matrix that is predominantly microcrystalline carbonate particles on the Owen Ridge and clay and organic matter on the Oman margin. Sediments with abundant siliceous microfossils display distinct, open fabrics with high porosity. Porosity reduction resulting from gravitational compaction appears to be the primary process affecting fabric change in the biogenic sediment sections. Fabric of illite-rich clayey silts and silty claystones from the Indus Fan (Site 720) and Owen Ridge (Sites 722 and 731) was examined for a composite section extending from 45 to 985 mbsf. In this section fabric of the fine-grained turbidites changes from one with small flocculated clay domains, random particle arrangement, and high porosity to a fabric with larger domains, strong preferred particle orientation roughly parallel to bedding, and lower porosity. These changes are accomplished by a growth in domain size, primarily through increasing face-to-face contacts, and by particle reorientation which is characterized by a sharp increase in alignment with bedding between 200 and 400 mbsf. Despite extensive particle reorientation, flocculated clay fabric persists in the deepest samples examined, particularly adjacent to silt grains, and the sediments lack fissility. Fabric changes over the 45-985 mbsf interval occur in response to gravitational compaction. Porosity reduction and development of preferred particle orientation in the Indus Fan and Owen Ridge sections occur at greater depths than outlined in previous fabric models for terrigenous sediments as a consequence of a greater abundance of silt and a greater abundance of illite and chlorite clays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcanic ash was recovered from lower Aptian to Albian deposits from DSDP Sites 463, 465, and 466; pelagic clay of the upper Pleistocene to Upper Cretaceous was recovered mainly from Site 464, with minor amounts at Sites 465 and 466. We present X-ray-mineralogy data on pelagic clay and altered volcanic ash recovered from the four Leg 62 sites. In addition, two ash samples from Sites 463 and 465, a pelagic clay from Site 464, and a clay vein from the basaltic basement at Site 464 each were analyzed for major, minor, and trace elements. Our purpose is to describe the mineralogy and chemistry of altered ash and pelagic clays, to determine the sources of their parent material, and to delineate the diagenetic history of these clay-rich deposits. Correlation of chemistry and mineralogy of ash and pelagic clay with volcanic rocks suspected to be their parent material is not always straightforward, because weathering and diagenetic alteration caused depletion or enrichment of many elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the bed and on the ocean slope of the southern latitudinal part of the Mariana Trench ancient sediments, as well as sedimentary and igneous rocks are exposed. In the lower part of the sampled part of the studied section Late Oligocene to Early Miocene chalk-like limestones and marls occur. Upward marly tuffites and tuffs (apparently alternating with carbonate rocks) occur. These rocks are overlain by Early Miocene tuffaceous clays and siliceous-clayey muds. In the upper part of the section there are Pleistocene pelagic clays and ethmodiscus oozes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The raw material for these investigations are samples from marine (sub)surface sediments around the northern part of the Antarctic Peninsula. They had been sampled in the years 1981 to 1986 during several expeditions of the research vessels Meteor, Polarstern and Walther Herwig. 83 box core, gravity core and dredge samples from the area of the Bransfield Strait, the Powell Basin and the northern Weddell Sea have been examined for their grain-size distribution, their mineralogical and petrographical composition. Silt prevails and its clay proportions exceed 25% wt. in water depths greater than 2000 m. The granulometrical results reveal some typical sedimentation processes within the area of investigation. While turbiditic processes together with sediment input from melting icebergs control the sedimentation in the Weddell Sea, the South Orkney Island Plateau and the Powell Basin, the fine grained material from Bransfield Strait mainly relies on marine currents in the shelf area. In addition, the direct sediment input of coarse shelf sediments from the Bransfield Strait into the Powell Basin through submarine canyons could be proven. Variations in the grain-size composition with sediment depth are smalI. The mineral composition of the clay and fine silt fractions is quite uniform in all samples. There are (in decreasing order): illite, montmorillonite, chlorite, smectite, mixed-Iayers, as well as detrital quartz and feldspars. A petrographically based sediment stratigraphy can be established in using the considerable changes in the chlorite- and Ca-plagioclase portions in samples from Core 224. For this sedimentation area a mean sedimentation rate of 7 cm/1000 a is assumed. Remarkable changes in the portions of amorphous silica components - diatom skeletons and volcanic glass shards - appear all over the area of investigation. They contribute between 4-83 % to the clay and fine silt fraction. Several provinces according to the heavy mineral assemblages in the fine sand fraction can be distinguished: (i) a province remarkably influenced by minerals of volcanic origin south and north of the South Shetland Islands; (ii) a small strip with sediment dominated by plutonic material along the western coast of the Antarctic Peninsula and (iii) a sediment controlled by metamorphic minerals and rock fragments in the area of the Weddell Sea and Elephant Island. While taking the whole grain-size spectrum into account a more comprehensive interpretation can be given: the accessoric but distinct appearance of tourmaline, rutile and zircon in the heavy mineral assembly along the northwestern coast of the Antarctic Peninsula is in agreement with the occurrence of acid volcanic rock pieces in the coarse fraction of the ice load detritus in this region. In the vicinity of the South Shetland Islands chlorite appears in remarkable portions in the clay fraction in combination with leucoxene, sphene and olivine, and pumice as well as pyroclastic rocks in the medium and coarse grain fractions, respectively. Amphiboles and amphibole-schists are dominant on the South Orkney Island Plateau. In the sediments of the northwestern Weddell Sea the heavy mineral phases of red spinel, garnet, kyanite and sillimanite in connection with medium to highgrade metamorphic rocks especially granulitic gneisses, are more abundant. A good conformity between the ice rafted rock sampIes and the rocks in the island outcrops could be proven, especially in the vicinity of offshore islands nearby. On the continent enrichments of rock societies and groups appear in spacious outlines: acid effusive rocks in the west of the ice divide on the Antarctic Peninsula, clastic sedimentites at the tip of the Antarctic Peninsula and granoblastic gneisses in central and eastern Antarctica. Coarse grain detritus with more than 1 cm of diameter must have been rafted by icebergs. These rock fragments are classified as rock types, groups and societies. The spacial distribution of their statistically determined weight relations evidently shows the paths of the iceberg drift and in nexus with already known iceberg routes also point to the possible areas of provenance, provided that the density of sample locations and the number of rock pieces are sufficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary minerals filling veins and vesicles in volcanic basement at Deep Sea Drilling Project Sites 458 and 459 indicate that there were two stages of alteration at each site: an early oxidative, probably hydrothermal, stage and a later, low-temperature, less oxidative stage, probably contemporaneous with faulting in the tectonically active Mariana forearc region. The initial stage is most evident in Hole 459B, where low-Al, high Fe smectites and iron hydroxides formed in vesicles in pillow basalts and low-Al palygorskite formed in fractures. Iron hydroxides and celadonite formed in massive basalts next to quartz-oligoclase micrographic intergrowths. Palygorskite was found in only one sample near the top of basement in Hole 458, but it too is associated with iron hydroxides. Palygorskite has previously been reported only in marine sediments in DSDP and other occurrences. It evidently formed here as a precipitate from fluids in which Si, Mg, Fe, and even some Al were concentrated. Experimental data suggest that the solutions probably had high pH and somewhat elevated temperatures. The compositions of associated smectites resemble those in hydrothermal sediments and in basalts at the Galapagos mounds geothermal field. The second stage of alteration was large-scale replacement of basalt by dioctahedral, trioctahedral, or mixed-layer clays and phillipsite along zones of intense fracturing, especially near the bottom of Holes 458 and 459B. The basalts are commonly slickensided, and there are recemented microfault offsets in overlying sediments. Native copper occurs in one core of Hole 458, but associated smectites are dominantly dioctahedral, unlike Hole 459B, where they are mainly trioctahedral, indicating nonoxidative alteration. The alteration in both holes is more intense than at most DSDP ocean crust sites and may have been augmented by water derived from subducting ocean crust beneath the fore-arc region.