975 resultados para Modified barrier function
Resumo:
This study assessed the quadriceps and hamstring strength before and 6 months after anterior cruciate ligament (ACL) reconstructive surgery using the hamstrings and related the findings to functional performance. Six months after surgery is a critical time for assessment as this is when players are returning to sport. Maximum isokinetic strength of 31 patients with complete unilateral ACL ruptures was measured at speeds of 60 degrees and 120 degrees per second. Functional assessment included the single hop, the triple hop, the shuttle run, side-step and carioca tests. All patients underwent a controlled quadriceps emphasized home-based physiotherapy program both before and after surgery. Results show that before surgery there was a 7.3% quadriceps strength deficit at 60 degrees per second compared to the uninjured leg but no hamstring strength deficit. After surgery there was a statistically significant but relatively small loss of muscle strength. The quadriceps strength deficit had increased to 12% and there was a 10% hamstring deficit. Post-operatively there was an 11% and 6.3% improvement in the hop tests, a 9% (P < 0.01) improvement in the shuttle run, a 15% (P < 0.001) improvement in the side step and a 24% (P < 0.001) improvement in the carioca tests (P < 0.001) despite the loss of muscle strength. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
High levels of mortality in the Mediterranean bath sponge industry have raised concerns for the future of sponge farms. Healthy sponges feed predominantly on bacteria, and many harbour a wide diversity of inter- and extra-cellular symbiotic bacteria. Here we describe the first isolation and description of a pathogenic bacterium from an infected marine sponge. Microbiological examination of tissue necrosis in the Great Barrier Reef sponge Rhopaloeides odorabile resulted in isolation of the bacterial strain NW4327. Sponges infected with strain NW4327 exhibited high levels of external tissue necrosis, and the strain was re-isolated from infected sponges. A single morphotype, which had burrowed through the collagenous spongin fibres causing severe necrosis, was observed microscopically. Strain NW4327 was capable of degrading commercial preparations of azo-collagen, providing further evidence of its involvement in spongin fibre necrosis, Strain NW4327 disrupted the microbial community associated with R. odorabile and was able to infect and kill healthy sponge tissue. 16S rRNA sequence analysis revealed that strain NW4327 is a novel member of the alpha-proteobacteria.
Resumo:
Polynucleotide immunisation with the E7 gene of human papillomavirus (HPV) type 16 induces only moderate levels of immune response, which may in part be due to limitation in E7 gene expression influenced by biased HPV codon usage. Here we compare for expression and immunogenicity polynucleotide expression plasmids encoding wild-type (pWE7) or synthetic codon optimised (pHE7) HPV16 E7 DNA. Cos-1 cells transfected with pHE7 expressed higher levels of E7 protein than similar cells transfected with pW7. C57BL/6 mice and F1 (C57X FVB) E7 transgenic mice immunised intradermally with E7 plasmids produced high levels of anti-E7 antibody. pHE7 induced a significantly stronger E7-specific cytotoxic T-lymphocyte response than pWE7 and 100% tumour protection in C57BL/6 mice, but neither vaccine induced CTL in partially E7 tolerant K14E7 transgenic mice. The data indicate that immunogenicity of an E7 polynucleotide vaccine can be enhanced by codon modification. However, this may be insufficient for priming E7 responses in animals with split tolerance to E7 as a consequence of expression of E7 in somatic cells. (C) 2002 Elsevier Science (USA).
Resumo:
Previous studies have shown that Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) is uniquely able to up-regulate the expression of the peptide transporters (referred to as TAP-1 and TAP-2) and major histocompatibility complex (MHC) class I in Burkitt's lymphoma (BL) cell lines. This up-regulation is often accompanied by a restoration of antigen-presenting function as measured by the ability of these cells to present endogenously expressed viral antigen to cytotoxic T lymphocytes. Here we show that the expression of LMP1 resulted in up-regulation and nuclear translocation of RelB that were coincident with increased expression of MHC class I in BL cells. Deletion of the C-terminal activator regions (CTARs) of LMP1 significantly impaired the abilities of LMP1 to translocate RelB into the nucleus and to up-regulate the expression of antigen-processing genes. Further analysis with single-point mutations within the CTARs confirmed that the residues critical for NF-kappaB activation directly contribute to antigen-processing function regulation in BL cells. This LMP1-mediated effect was blocked following expression of either dominant negative IkappaBalpha S32/36A, an NF-kappaB inhibitor, or antisense RelB. These observations indicate that upregulation of antigen-presenting function in B cells mediated by LMP1 is signaled through the NF-kappaB subunit RelB. The data provide a mechanism by which LMP1 modulates immunogenicity of Epstein-Barr virus-infected normal and malignant cells.
Resumo:
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
Resumo:
We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we present a new unified approach and an elementary proof of a very general theorem on the existence of a semicontinuous or continuous utility function representing a preference relation. A simple and interesting new proof of the famous Debreu Gap Lemma is given. In addition, we prove a new Gap Lemma for the rational numbers and derive some consequences. We also prove a theorem which characterizes the existence of upper semicontinuous utility functions on a preordered topological space which need not be second countable. This is a generalization of the classical theorem of Rader which only gives sufficient conditions for the existence of an upper semicontinuous utility function for second countable topological spaces. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper we investigate the structure of non-representable preference relations. While there is a vast literature on different kinds of preference relations that can be represented by a real-valued utility function, very little is known or understood about preference relations that cannot be represented by a real-valued utility function. There has been no systematic analysis of the non-representation problem. In this paper we give a complete description of non-representable preference relations which are total preorders or chains. We introduce and study the properties of four classes of non-representable chains: long chains, planar chains, Aronszajn-like chains and Souslin chains. In the main theorem of the paper we prove that a chain is non-representable if and only it is a long chain, a planar chain, an Aronszajn-like chain or a Souslin chain. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The splitting method is a simulation technique for the estimation of very small probabilities. In this technique, the sample paths are split into multiple copies, at various stages in the simulation. Of vital importance to the efficiency of the method is the Importance Function (IF). This function governs the placement of the thresholds or surfaces at which the paths are split. We derive a characterisation of the optimal IF and show that for multi-dimensional models the natural choice for the IF is usually not optimal. We also show how nearly optimal splitting surfaces can be derived or simulated using reverse time analysis. Our numerical experiments illustrate that by using the optimal IF, one can obtain a significant improvement in simulation efficiency.
Resumo:
Using the B3LYP/6-31G* ab initio method, we have studied the rotation about the C=C bonds in 15 push-pull ethylenes of the general formula (X,Y)C=C(CHO)(2) [X, Y = NH2, NHCH3, N(CH3)(2), OCH3, SCH3] in the gas phase. Two stationary points (minimum and transition state) were located for all compounds. The geometry, dipole moments, natural bond orbital atomic charges, as well as the rotational barriers were examined. The torsion angle 0 depends essentially on the presence or absence of intramolecular hydrogen bonds, and the barrier is a function of the torsion angle. (C) 2002 Elsevier Science B.V. All rights reserved.