953 resultados para Models and Principles
Resumo:
Tämän diplomityön päätavoitteena oli tutkia millaisia vaikutuksia ilmastonmuutoksella on pitkiin sähkökatkoihin ja miten pitkä sähkökatko vaikuttaa yhteiskunnan toimintoihin sekä sähkönkäyttäjiin. Työn alussa käydään läpi ilmastonmuutos ilmiönä. Sittemmin tutkitaan erilaisia ilmastomalleja ja malleista saatuja tuloksia esimerkiksi lämpötilan ja tuulisuuden osalta. Myös roudan ja tykkylumen esiintymiseen paneudutaan. Yli puolet työstä koostuu yhteiskunnan sähkökatkon sietämisen tutkimisesta. Perustoimintojen, kuten vesijohtojen, lämmityksen ja puhelimen toimintaa tutkitaan. Työssä tehdään myös katsaus kuntien valmistuneisuuteen valmiussuunnitelmien ja varavoiman osalta.
Resumo:
In diffusion MRI, traditional tractography algorithms do not recover truly quantitative tractograms and the structural connectivity has to be estimated indirectly by counting the number of fiber tracts or averaging scalar maps along them. Recently, global and efficient methods have emerged to estimate more quantitative tractograms by combining tractography with local models for the diffusion signal, like the Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) framework. In this abstract, we show the importance of using both (i) proper multi-compartment diffusion models and (ii) adequate multi-shell acquisitions, in order to evaluate the accuracy and the biological plausibility of the tractograms.
Resumo:
There is an increasing need to develop improved systems for predicting the safety of xenobiotics. However, to move beyond hazard identification the available concentration of the test compounds needs to be incorporated. In this study cyclosporine A (CsA) was used as a model compound to assess the kinetic profiles in two rodent brain cell cultures after single and repeated exposures. CsA induced-cyclophilin B (Cyp-B) secretion was also determined as CsA-specific pharmacodynamic endpoint. Since CsA is a potent p-glycoprotein substrate, the ability of this compound to cross the blood-brain barrier (BBB) was also investigated using an in vitro bovine model with repeated exposures up to 14days. Finally, CsA uptake mechanisms were studied using a parallel artificial membrane assay (PAMPA) in combination with a Caco-2 model. Kinetic results indicate a low intracellular CsA uptake, with no marked bioaccumulation or biotransformation. In addition, only low CsA amounts crossed the BBB. PAMPA and Caco-2 experiments revealed that CsA is mostly trapped to lipophilic compartments and exits the cell apically via active transport. Thus, although CsA is unlikely to enter the brain at cytotoxic concentrations, it may cause alterations in electrical activity and is likely to increase the CNS concentration of other compounds by occupying the BBBs extrusion capacity. Such an integrated testing system, incorporating BBB, brain culture models and kinetics could be applied for assessing neurotoxicity potential of compounds.
Resumo:
AimHigh intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses. LocationThe circumpolar Arctic and northern temperate alpine ranges. MethodsWe estimated the climatic niches of 30 cold-adapted plant species using range maps coupled with species distribution models and hindcasted species suitable areas to reconstructions of the mid-Holocene and LGM climates. We computed the species-specific migration distances from the species glacial refugia to their current distribution and correlated distances to extant genetic diversity in 1295 populations. Differential responses among species were related to life-history traits. ResultsWe found a negative association between inferred migration distances from refugia and genetic diversities in 25 species, but only 11 had statistically significant negative slopes. The relationships between inferred distance and population genetic diversity were steeper for insect-pollinated species than wind-pollinated species, but the difference among pollination system was marginally independent from phylogenetic autocorrelation. Main conclusionThe relationships between inferred migration distances and genetic diversities in 11 species, independent from current isolation, indicate that past range shifts were associated with a genetic bottleneck effect with an average of 21% loss of genetic diversity per 1000km(-1). In contrast, the absence of relationship in many species also indicates that the response is species specific and may be modulated by plant pollination strategies or result from more complex historical contingencies than those modelled here.
Resumo:
Certain strains of Pantoea are used as biocontrol agents for the suppression of plant diseases. However, their commercial registration is hampered in some countries because of biosafety concerns. This study compares clinical and plant-beneficial strains of P. agglomerans and related species using a phenotypic analysis approach in which plant-beneficial effects, adverse effects in nematode models, and toxicity were evaluated. Plant-beneficial effects were determined as the inhibition of apple fruit infection by Penicillium expansum and apple flower infection by Erwinia amylovora. Clinical strains had no general inhibitory activity against infection by the fungal or bacterial plant pathogens, as only one clinical strain inhibited P. expansum and three inhibited E. amylovora. By contrast, all biocontrol strains showed activity against at least one of the phytopathogens, and three strains were active against both. The adverse effects in animals were evaluated in the plant-parasitic nematode Meloidogyne javanica and the bacterial-feeding nematode Caenorhabditis elegans. Both models indicated adverse effects of the two clinical strains but not of any of the plant-beneficial strains. Toxicity was evaluated by means of hemolytic activity in blood, and genotoxicity with the Ames test. None of the strains, whether clinical or plant-beneficial, showed any evidence of toxicity
Resumo:
Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins.
Resumo:
This study investigates the relationship between the time-varying risk premiums and conditional market risk in the stock markets of the ten member countries of Economy and Monetary Union. Second, it examines whether the conditional second moments change over time and are there asymmetric effects in the conditional covariance matrix. Third, it analyzes the possible effects of the chosen testing framework. Empirical analysis is conducted using asymmetric univariate and multivariate GARCH-in-mean models and assuming three different degrees of market integration. For a daily sample period from 1999 to 2007, the study shows that the time-varying market risk alone is not enough to explain the dynamics of risk premiums and indications are found that the market risk is detected only when its price is allowed to change over time. Also asymmetric effects in the conditional covariance matrix, which is found to be time-varying, are clearly present and should be recognized in empirical asset pricing analyses.
Resumo:
Value chain collaboration has been a prevailing topic for research, and there is a constantly growing interest in developing collaborative models for improved efficiency in logistics. One area of collaboration is demand information management, which enables improved visibility and decrease of inventories in the value chain. Outsourcing of non-core competencies has changed the nature of collaboration from intra-enterprise to cross-enterprise activity, and this together with increasing competition in the globalizing markets have created a need for methods and tools for collaborative work. The retailer part in the value chain of consumer packaged goods (CPG) has been studied relatively widely, proven models have been defined, and there exist several best practice collaboration cases. The information and communications technology has developed rapidly, offering efficient solutions and applications to exchange information between value chain partners. However, the majority of CPG industry still works with traditional business models and practices. This concerns especially companies operating in the upstream of the CPG value chain. Demand information for consumer packaged goods originates at retailers' counters, based on consumers' buying decisions. As this information does not get transferred along the value chain towards the upstream parties, each player needs to optimize their part, causing safety margins for inventories and speculation in purchasing decisions. The safety margins increase with each player, resulting in a phenomenon known as the bullwhip effect. The further the company is from the original demand information source, the more distorted the information is. This thesis concentrates on the upstream parts of the value chain of consumer packaged goods, and more precisely the packaging value chain. Packaging is becoming a part of the product with informative and interactive features, and therefore is not just a cost item needed to protect the product. The upstream part of the CPG value chain is distinctive, as the product changes after each involved party, and therefore the original demand information from the retailers cannot be utilized as such – even if it were transferred seamlessly. The objective of this thesis is to examine the main drivers for collaboration, and barriers causing the moderate adaptation level of collaborative models. Another objective is to define a collaborative demand information management model and test it in a pilot business situation in order to see if the barriers can be eliminated. The empirical part of this thesis contains three parts, all related to the research objective, but involving different target groups, viewpoints and research approaches. The study shows evidence that the main barriers for collaboration are very similar to the barriers in the lower part of the same value chain; lack of trust, lack of business case and lack of senior management commitment. Eliminating one of them – the lack of business case – is not enough to eliminate the two other barriers, as the operational model in this thesis shows. The uncertainty of the future, fear of losing an independent position in purchasing decision making and lack of commitment remain strong enough barriers to prevent the implementation of the proposed collaborative business model. The study proposes a new way of defining the value chain processes: it divides the contracting and planning process into two processes, one managing the commercial parts and the other managing the quantity and specification related issues. This model can reduce the resistance to collaboration, as the commercial part of the contracting process would remain the same as in the traditional model. The quantity/specification-related issues would be managed by the parties with the best capabilities and resources, as well as access to the original demand information. The parties in between would be involved in the planning process as well, as their impact for the next party upstream is significant. The study also highlights the future challenges for companies operating in the CPG value chain. The markets are becoming global, with toughening competition. Also, the technology development will most likely continue with a speed exceeding the adaptation capabilities of the industry. Value chains are also becoming increasingly dynamic, which means shorter and more agile business relationships, and at the same time the predictability of consumer demand is getting more difficult due to shorter product life cycles and trends. These changes will certainly have an effect on companies' operational models, but it is very difficult to estimate when and how the proven methods will gain wide enough adaptation to become standards.
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
Global warming mitigation has recently become a priority worldwide. A large body of literature dealing with energy related problems has focused on reducing greenhouse gases emissions at an engineering scale. In contrast, the minimization of climate change at a wider macroeconomic level has so far received much less attention. We investigate here the issue of how to mitigate global warming by performing changes in an economy. To this end, we make use of a systematic tool that combines three methods: linear programming, environmentally extended input output models, and life cycle assessment principles. The problem of identifying key economic sectors that contribute significantly to global warming is posed in mathematical terms as a bi criteria linear program that seeks to optimize simultaneously the total economic output and the total life cycle CO2 emissions. We have applied this approach to the European Union economy, finding that significant reductions in global warming potential can be attained by regulating specific economic sectors. Our tool is intended to aid policymakers in the design of more effective public policies for achieving the environmental and economic targets sought.
Resumo:
This article is the result of an ongoing research into a variety of features of Spanish local government. It aims, in particular, at providing a profile of the tools implemented by local authorities to improve local democracy in Catalonia. The main hypothesis of the work is that, even though the Spanish local model is constrained by a shared and unique set of legal regulations, local institutions in Catalonia have developed their own model of local participation. And the range of instruments like these is still now increasing. More specifically, the scope of this research is twofold. On the one hand, different types of instruments for public deliberation in the Catalan local administration system are identified and presented, based on the place they take in the policy cycle. On the other hand, we focus on policy domains and the quality of the decision-making processes. Researching the stability of the participation tools or whether local democracy prefers more 'ad hoc' processes allows us to analyze the boundaries/limits of local democracy in Catalonia. The main idea underlying this paper is that, despite the existence of a single legal model regulating municipalities in Catalonia, local authorities tend to use their legally granted selfmanagement capacities to design their own instruments which end up presenting perceivable distinct features, stressing democracy in different policy domains, and in diverse policy cycles. Therefore, this paper is intended to identify such models and to provide factors (variables) so that an explanatory model can be built.
Resumo:
The Kenyan forestry and sawmilling industry have been subject to a changing environment since 1999 when the industrial forest plantations were closed down. This has lowered raw material supply and it has affected and reduced the sawmill operations and the viability of the sawmill enterprises. The capacity of the 276 registered sawmills is not sufficient to fulfill sawn timber demand in Kenya. This is because of the technological degradation and lack of a qualified labor force, which were caused because of non-existent sawmilling education and further training in Kenya. Lack of competent sawmill workers has led to low raw material recovery, under utilization of resources and loss of employment. The objective of the work was to suggest models, methods and approaches for the competence and capacity development of the Kenyan sawmilling industry, sawmills and their workers. A nationwide field survey, interviews, questionnaire and literature review was used for data collection to find out the sawmills’ competence development areas and to suggest models and methods for their capacity building. The sampling frame included 22 sawmills that represented 72,5% of all the registered sawmills in Kenya. The results confirmed that the sawmills’ technological level was backwards, productivity low, raw material recovery unacceptable and workers’ professional education low. The future challenges will be how to establish the sawmills’ capacity building and workers’ competence development. Sawmilling industry development requires various actions through new development models and approaches. Activities should be started for technological development and workers’ competence development. This requires re-starting of vocational training in sawmilling and the establishment of more effective co-operation between the sawmills and their stakeholder groups. In competence development the Enterprise Competence Management Model of Nurminen (2007) can be used, whereas the best training model and approach would be a practically oriented learning at work model in which the short courses, technical assistance and extension services would be the key functions.
Resumo:
The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU’s Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: · formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and · formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste management and energy supply systems are considered as one larger integrated system with one primary target of serving the customers, i.e. citizens, as efficiently as possible in the spirit of sustainable development, including the following requirements: · reasonable overall costs, including waste management costs and energy costs; · minimum environmental burdens caused by the integrated waste management and energy system, taking into account the requirement above; and · social acceptance of the selected waste treatment and energy production methods. The integrated waste management and energy system is described by forming a SISMan model including three different flows of the system: energy, mass and financial flows. By defining the three types of flows for an integrated system, the selected factor results needed in the decision-making process of the selection of waste management treatment processes for different waste fractions can be calculated. The model and its results form a transparent description of the integrated system under discussion. The MEFLO decision matrix has been formed from the results of the SISMan model, combined with additional data, including e.g. environmental restrictions and regional aspects. System alternatives which do not meet the requirements set by legislation can be deleted from the comparisons before any closer numerical considerations. The second novelty value of this thesis is the three-level ranking method for combining the factor results of the MEFLO decision matrix. As a result of the MEFLO decision matrix, a transparent ranking of different system alternatives, including selection of treatment processes for different waste fractions, is achieved. SISMan and MEFLO are methods meant to be utilized in municipal decision-making processes concerning waste management and energy supply as simple, transparent and easyto- understand tools. The methods can be utilized in the assessment of existing systems, and particularly in the planning processes of future regional integrated systems. The principles of SISMan and MEFLO can be utilized also in other environments, where synergies of integrating two (or more) systems can be obtained. The SISMan flow model and the MEFLO decision matrix can be formed with or without any applicable commercial or free-of-charge tool/software. SISMan and MEFLO are not bound to any libraries or data-bases including process information, such as different emission data libraries utilized in life cycle assessments.
Resumo:
Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.