943 resultados para Model-driven design
Resumo:
In this paper we present a novel method for emulating a stochastic, or random output, computer model and show its application to a complex rabies model. The method is evaluated both in terms of accuracy and computational efficiency on synthetic data and the rabies model. We address the issue of experimental design and provide empirical evidence on the effectiveness of utilizing replicate model evaluations compared to a space-filling design. We employ the Mahalanobis error measure to validate the heteroscedastic Gaussian process based emulator predictions for both the mean and (co)variance. The emulator allows efficient screening to identify important model inputs and better understanding of the complex behaviour of the rabies model.
Resumo:
This dissertation studies the process of operations systems design within the context of the manufacturing organization. Using the DRAMA (Design Routine for Adopting Modular Assembly) model as developed by a team from the IDOM Research Unit at Aston University as a starting point, the research employed empirically based fieldwork and a survey to investigate the process of production systems design and implementation within four UK manufacturing industries: electronics assembly, electrical engineering, mechanical engineering and carpet manufacturing. The intention was to validate the basic DRAMA model as a framework for research enquiry within the electronics industry, where the initial IDOM work was conducted, and then to test its generic applicability, further developing the model where appropriate, within the other industries selected. The thesis contains a review of production systems design theory and practice prior to presenting thirteen industrial case studies of production systems design from the four industry sectors. The results and analysis of the postal survey into production systems design are then presented. The strategic decisions of manufacturing and their relationship to production systems design, and the detailed process of production systems design and operation are then discussed. These analyses are used to develop the generic model of production systems design entitled DRAMA II (Decision Rules for Analysing Manufacturing Activities). The model contains three main constituent parts: the basic DRAMA model, the extended DRAMA II model showing the imperatives and relationships within the design process, and a benchmark generic approach for the design and analysis of each component in the design process. DRAMA II is primarily intended for use by researchers as an analytical framework of enquiry, but is also seen as having application for manufacturing practitioners.
Resumo:
Product design decisions can have a significant impact on the financial and operation performance of manufacturing companies. Therefore good analysis of the financial impact of design decisions is required if the profitability of the business is to be maximised. The product design process can be viewed as a chain of decisions which links decisions about the concept to decisions about the detail. The idea of decision chains can be extended to include the design and operation of the 'downstream' business processes which manufacture and support the product. These chains of decisions are not independent but are interrelated in a complex manner. To deal with the interdependencies requires a modelling approach which represents all the chains of decisions, to a level of detail not normally considered in the analysis of product design. The operational, control and financial elements of a manufacturing business constitute a dynamic system. These elements interact with each other and with external elements (i.e. customers and suppliers). Analysing the chain of decisions for such an environment requires the application of simulation techniques, not just to any one area of interest, but to the whole business i.e. an enterprise simulation. To investigate the capability and viability of enterprise simulation an experimental 'Whole Business Simulation' system has been developed. This system combines specialist simulation elements and standard operational applications software packages, to create a model that incorporates all the key elements of a manufacturing business, including its customers and suppliers. By means of a series of experiments, the performance of this system was compared with a range of existing analysis tools (i.e. DFX, capacity calculation, shop floor simulator, and business planner driven by a shop floor simulator).
Resumo:
Manufacturing firms are driven by competitive pressures to continually improve the effectiveness and efficiency of their organisations. For this reason, manufacturing engineers often implement changes to existing processes, or design new production facilities, with the expectation of making further gains in manufacturing system performance. This thesis relates to how the likely outcome of this type of decision should be predicted prior to its implementation. The thesis argues that since manufacturing systems must also interact with many other parts of an organisation, the expected performance improvements can often be significantly hampered by constraints that arise elsewhere in the business. As a result, decision-makers should attempt to predict just how well a proposed design will perform when these other factors, or 'support departments', are taken into consideration. However, the thesis also demonstrates that, in practice, where quantitative analysis is used to evaluate design decisions, the analysis model invariably ignores the potential impact of support functions on a system's overall performance. A more comprehensive modelling approach is therefore required. A study of how various business functions interact establishes that to properly represent the kind of delays that give rise to support department constraints, a model should actually portray the dynamic and stochastic behaviour of entities in both the manufacturing and non-manufacturing aspects of a business. This implies that computer simulation be used to model design decisions but current simulation software does not provide a sufficient range of functionality to enable the behaviour of all of these entities to be represented in this way. The main objective of the research has therefore been the development of a new simulator that will overcome limitations of existing software and so enable decision-makers to conduct a more holistic evaluation of design decisions. It is argued that the application of object-oriented techniques offers a potentially better way of fulfilling both the functional and ease-of-use issues relating to development of the new simulator. An object-oriented analysis and design of the system, called WBS/Office, are therefore presented that extends to modelling a firm's administrative and other support activities in the context of the manufacturing system design process. A particularly novel feature of the design is the ability for decision-makers to model how a firm's specific information and document processing requirements might hamper shop-floor performance. The simulator is primarily intended for modelling make-to-order batch manufacturing systems and the thesis presents example models created using a working version of WBS/Office that demonstrate the feasibility of using the system to analyse manufacturing system designs in this way.
Resumo:
University students encounter difficulties with academic English because of its vocabulary, phraseology, and variability, and also because academic English differs in many respects from general English, the language which they have experienced before starting their university studies. Although students have been provided with many dictionaries that contain some helpful information on words used in academic English, these dictionaries remain focused on the uses of words in general English. There is therefore a gap in the dictionary market for a dictionary for university students, and this thesis provides a proposal for such a dictionary (called the Dictionary of Academic English; DOAE) in the form of a model which depicts how the dictionary should be designed, compiled, and offered to students. The model draws on state-of-the-art techniques in lexicography, dictionary-use research, and corpus linguistics. The model demanded the creation of a completely new corpus of academic language (Corpus of Academic Journal Articles; CAJA). The main advantages of the corpus are its large size (83.5 million words) and balance. Having access to a large corpus of academic language was essential for a corpus-driven approach to data analysis. A good corpus balance in terms of domains enabled a detailed domain-labelling of senses, patterns, collocates, etc. in the dictionary database, which was then used to tailor the output according to the needs of different types of student. The model proposes an online dictionary that is designed as an online dictionary from the outset. The proposed dictionary is revolutionary in the way it addresses the needs of different types of student. It presents students with a dynamic dictionary whose contents can be customised according to the user's native language, subject of study, variant spelling preferences, and/or visual preferences (e.g. black and white).
Resumo:
Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.
Resumo:
This article develops a model of practice-driven institutional change - or change that originates in the everyday work of individuals but results in a shift in field-level logic. In demonstrating how improvisations at work can generate institutional change, we attend to the earliest moments of change, which extant research has neglected; and we contrast existing accounts that focus on active entrepreneurship and the contested nature of change. We outline the specific mechanisms by which change emerges from everyday work, becomes justified, and diffuses within an organization and field, as well as precipitating and enabling dynamics that trigger and condition these mechanisms. © Academy of Management Journal.
Resumo:
The range of existence and the properties of two essentially different chaotic attractors found in a model of nonlinear convection-driven dynamos in rotating spherical shells are investigated. A hysteretic transition between these attractors is established as a function of the rotation parameter t. The width of the basins of attraction is also estimated. © 2012 The Royal Swedish Academy of Sciences.
Resumo:
Links the concept of market-driven business strategies with the design of production systems. It draws upon the case of a firm which, during the last decade, changed its strategy from being “technology led” to “market driven”. The research, based on interdisciplinary fieldwork involving long-term participant observation, investigated the factors which contribute to the successful design and implementation of flexible production systems in electronics assembly. These investigations were conducted in collaboration with a major computer manufacturer, with other electronics firms being studied for comparison. The research identified a number of strategies and actions seen as crucial to the development of efficient flexible production systems, namely: effective integration of subsystems, development of appropriate controls and performance measures, compatibility between production system design and organization structure, and the development of a climate conducive to organizational change. Overall, the analysis suggests that in the electronics industry there exists an extremely high degree of environmental complexity and turbulence. This serves to shape the strategic, technical and social structures that are developed to match this complexity, examples of which are niche marketing, flexible manufacturing and employee harmonization.
Resumo:
Flexible Assembly Systems (FASs) are normally associated with the automatic, or robotic, assembly of products, supported by automated material handling systems. However, manual assembly operations are still prevalent within many industries, where the complexity and variety of products prohibit the development of suitable automated assembly equipment. This article presents a generic model for incorporating flexibility into the design and control of assembly operations concerned with high variety/low volume manufacture, drawing on the principles for Flexible Manufacturing Systems (FMS) and Just-in-Time (JIT) delivery. It is based on work being undertaken in an electronics company where the assembly operations have been overhauled and restructured in response to a need for greater flexibility, shorter cycle times and reduced inventory levels. The principles employed are in themselves not original. However, the way they have been combined and tailored has created a total manufacturing control system which represents a new concept for responding to demands placed on market driven firms operating in an uncertain environment.
Resumo:
Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.
Resumo:
In this paper we present the design and analysis of an intonation model for text-to-speech (TTS) synthesis applications using a combination of Relational Tree (RT) and Fuzzy Logic (FL) technologies. The model is demonstrated using the Standard Yorùbá (SY) language. In the proposed intonation model, phonological information extracted from text is converted into an RT. RT is a sophisticated data structure that represents the peaks and valleys as well as the spatial structure of a waveform symbolically in the form of trees. An initial approximation to the RT, called Skeletal Tree (ST), is first generated algorithmically. The exact numerical values of the peaks and valleys on the ST is then computed using FL. Quantitative analysis of the result gives RMSE of 0.56 and 0.71 for peak and valley respectively. Mean Opinion Scores (MOS) of 9.5 and 6.8, on a scale of 1 - -10, was obtained for intelligibility and naturalness respectively.
Resumo:
Design verification in the digital domain, using model-based principles, is a key research objective to address the industrial requirement for reduced physical testing and prototyping. For complex assemblies, the verification of design and the associated production methods is currently fragmented, prolonged and sub-optimal, as it uses digital and physical verification stages that are deployed in a sequential manner using multiple systems. This paper describes a novel, hybrid design verification methodology that integrates model-based variability analysis with measurement data of assemblies, in order to reduce simulation uncertainty and allow early design verification from the perspective of satisfying key assembly criteria.
Resumo:
This research develops a methodology and model formulation which suggests locations for rapid chargers to help assist infrastructure development and enable greater battery electric vehicle (BEV) usage. The model considers the likely travel patterns of BEVs and their subsequent charging demands across a large road network, where no prior candidate site information is required. Using a GIS-based methodology, polygons are constructed which represent the charging demand zones for particular routes across a real-world road network. The use of polygons allows the maximum number of charging combinations to be considered whilst limiting the input intensity needed for the model. Further polygons are added to represent deviation possibilities, meaning that placement of charge points away from the shortest path is possible, given a penalty function. A validation of the model is carried out by assessing the expected demand at current rapid charging locations and comparing to recorded empirical usage data. Results suggest that the developed model provides a good approximation to real world observations, and that for the provision of charging, location matters. The model is also implemented where no prior candidate site information is required. As such, locations are chosen based on the weighted overlay between several different routes where BEV journeys may be expected. In doing so many locations, or types of locations, could be compared against one another and then analysed in relation to siting practicalities, such as cost, land permission and infrastructure availability. Results show that efficient facility location, given numerous siting possibilities across a large road network can be achieved. Slight improvements to the standard greedy adding technique are made by adding combination weightings which aim to reward important long distance routes that require more than one charge to complete.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.