860 resultados para Model development guidelines
Resumo:
The following activities are specifically identified as ineligible. 1. Construction of buildings, or portions thereof, used predominantly for the general conduct of government (e.g., city halls, courthouses, jails, police stations). 2. General government expenses. 3. Costs of operating and maintaining public facilities and services (e.g., mowing parks, replacing street light bulbs). 4. Servicing or refinancing of existing debt.
Resumo:
The following activities are specifically identified as ineligible. 1. Design Engineering costs of water storage tanks/towers. 2. Construction of buildings, or portions thereof, used predominantly for the general conduct of government (e.g., city halls, courthouses, jails, police stations). 3. General government expenses. 4. Costs of operating and maintaining public facilities and services (e.g., mowing parks, replacing street light bulbs). 5. Servicing or refinancing of existing debt.
Resumo:
The following activities are specifically identified as ineligible. 1. Construction of buildings, or portions thereof, used predominantly for the general conduct of government (e.g., city halls, courthouses, jails, police stations). 2. General government expenses. 3. Costs of operating and maintaining public facilities and services (e.g., mowing parks, replacing street light bulbs). 4. Servicing or refinancing of existing debt.
Resumo:
"May 1989."
Resumo:
Bibliography: p. [41]-42.
Resumo:
Bibliography: p. 27.
Resumo:
Technical Assistance Grant Project, no. 01-6109132-1.
Resumo:
"Contract number 105-78-1016."
Resumo:
Island County is located in the Puget Sound of Washington State and includes several islands, the largest of which is Whidbey Island. Central Whidbey Island was chosen as the project site, as residents use groundwater for their water supply and seawater intrusion near the coast is known to contaminate this resource. In 1989, Island County adopted a Saltwater Intrusion Policy and used chloride concentrations in existing wells in order to define and map “risk zones.” In 2005, this method of defining vulnerability was updated with the use of water level elevations in conjunction with chloride concentrations. The result of this work was a revised map of seawater intrusion vulnerability that is currently in use by Island County. This groundwater management strategy is defined as trigger-level management and is largely a reactive tool. In order to evaluate trends in the hydrogeologic processes at the site, including seawater intrusion under sea level rise scenarios, this report presents a workflow where groundwater flow and discharge to the sea are quantified using a revised conceptual site model. The revised conceptual site model used several simplifying assumptions that allow for first-order quantitative predictions of seawater intrusion using analytical methods. Data from water well reports included lithologic and well construction information, static water levels, and aquifer tests for specific capacity. Results from specific capacity tests define the relationship between discharge and drawdown and were input for a modified Theis equation to solve for transmissivity (Arihood, 2009). Components of the conceptual site model were created in ArcGIS and included interpolation of water level elevation, creation of groundwater basins, and the calculation of net recharge and groundwater discharge for each basin. The revised conceptual site model was then used to hypothesize regarding hydrogeologic processes based on observed trends in groundwater flow. Hypotheses used to explain a reduction in aquifer thickness and hydraulic gradient were: (1) A large increase in transmissivity occurring near the coast. (2) The reduced aquifer thickness and hydraulic gradient were the result of seawater intrusion. (3) Data used to create the conceptual site model were insufficient to resolve trends in groundwater flow. For Hypothesis 2, analytical solutions for groundwater flow under Dupuit assumptions were applied in order to evaluate seawater intrusion under projected sea level rise scenarios. Results indicated that a rise in sea level has little impact on the position of a saltwater wedge; however, a reduction in recharge has significant consequences. Future work should evaluate groundwater flow using an expanded monitoring well network and aquifer recharge should be promoted by reducing surface water runoff.
Resumo:
Many Australian grain growers need to change their management approach to ensure their continued viability, but do not have the required knowledge and skills. Uptake of relevant education and training is poor, despite the positive correlation between learning, change and farm viability. As men are generally occupied with the operational aspects of the farm, much of the management role has been taken on by their partners, despite their lack of relevant formal qualifications. Professional development of farm partners therefore has the potential to improve the viability of grain growers. A model combining learning circles and action learning projects is proposed.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgO-SiO2 system has been developed. The model links the slag viscosities to the internal structures of the melts through the concentrations of various Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of these structural units are derived from a quasi-chemical thermodynamic model of the system. The model described in this series of papers enables the viscosities of liquid slags to be predicted within experimental uncertainties over the whole range of temperatures and compositions in the Al2O3 CaOMgO-SiO2 system.
Resumo:
A structurally-based quasi-chemical viscosity model has been developed for the Al2O3 CaO-'FeO'-MgO-SiO2 system. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of structural units are derived from the quasi-chemical thermodynamic model. The focus of the work described in the present paper is the analysis of experimental data and the viscosity models for fully liquid slags in the Al2O3-CaO-MgO, Al2O3 MgO-SiO2 and CaO-MgO-SiO2 systems.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgOSiO2 system has been developed. The focus of the work described in the present paper is the analysis of the experimental data and viscosity models in the quaternary system Al2O3 CaO-MgO-SiO2 and its subsystems. A review of the experimental data, viscometry methods used and viscosity models available in the Al2O3 CaO-MgO-SiO2 and its sub-systems is reported. The quasi-chemical viscosity model is shown to provide good agreement between experimental data and predictions over the whole compositional range.
Resumo:
The aim of this study was to ascertain the most suitable dosing schedule for gentamicin in patients receiving hemodialysis. We developed a model to describe the concentrationtime course of gentamicin in patients receiving hemodialysis. Using the model, an optimal dosing schedule was evaluated. Various dosing regimens were compared in their ability to achieve maximum concentration (C-max, >= 8 mg/L) and area under the concentration time-curve (AUC >= 70 mg(.)h/L and <= 120 mg(.)h/L per 24 hours). The model was evaluated by comparing model predictions against real data collected retrospectively. Simulations from the model confirmed the benefits of predialysis dosing. The mean optimal dose was 230 mg administered immediately before dialysis. The model was found to have good predictive performance when simulated data were compared to data observed in real patients. In summary, a model was developed that describes gentamicin pharmacokinetics in patients receiving hemodialysis. Predialysis dosing provided a superior pharmacokinetic profile than did postdialysis dosing.
Resumo:
Systemic lupus erythematosus (SLE) is characterised by the production of autoantibodies against ubiquitous antigens, especially nuclear components. Evidence makes it clear that the development of these autoantibodies is an antigen-driven process and that immune complexes involving DNA-containing antigens play a key role in the disease process. In rodents, DNase I is the major endonuclease present in saliva, urine and plasma, where it catalyses the hydrolysis of DNA, and impaired DNase function has been implicated in the pathogenesis of SLE. In this study we have evaluated the effects of transgenic overexpression of murine DNase I endonucleases in vivo in a mouse model of lupus. We generated transgenic mice having T-cells that express either wild-type DNase I (wt. DNase I) or a mutant DNase I ( ash. DNase I), engineered for three new properties - resistance to inhibition by G-actin, resistance to inhibition by physiological saline and hyperactivity compared to wild type. By crossing these transgenic mice with a murine strain that develops SLE we found that, compared to control nontransgenic littermates or wt. DNase I transgenic mice, the ash. DNase I mutant provided significant protection from the development of anti-single-stranded DNA and anti-histone antibodies, but not of renal disease. In summary, this is the first study in vivo to directly test the effects of long-term increased expression of DNase I on the development of SLE. Our results are in line with previous reports on the possible clinical benefits of recombinant DNase I treatment in SLE, and extend them further to the use of engineered DNase I variants with increased activity and resistance to physiological inhibitors.