877 resultados para Mobilisation With Movement
Resumo:
Neuronal function is dependent on the transport of materials from the cell body to the synapse via anterograde axonal transport. Anterograde axonal transport consists of several components that differ in both rate and protein composition. In fast transport, membranous organelles are moved along microtubules by the motor protein kinesin. The cytoskeleton and the cytomatrix proteins move in the two components of slow transport. While the mechanisms underlying slow transport are unknown, it has been hypothesized that the movement of microtubules in slow transport is generated by sliding. To determine whether dynein, a motor protein that causes microtubule sliding in flagella, may play a role in slow axonal transport, we identified the transport rate components with which cytoplasmic dynein is associated in rat optic nerve. Nearly 80% of the anterogradely moving dynein was associated with slow transport, whereas only approximately 15% of the dynein was associated with the membranous organelles of anterograde fast axonal transport. A segmental analysis of the transport of dynein through contiguous regions of the optic nerve and tract showed that dynein is associated with the microfilaments and other proteins of slow component b. Dynein from this transport component has the capacity to bind microtubules in vitro. These results are consistent with the hypothesis that cytoplasmic dynein generates the movement of microtubules in slow axonal transport. A model is presented to illustrate how dynein attached to the slow component b complex of proteins is appropriately positioned to generate force of the correct polarity to slide microtubules down the axon.
Resumo:
We have used capacitance measurements with a 1-microsecond voltage clamp technique to probe electrogenic ion-transporter interactions in giant excised membrane patches. The hydrophobic ion dipicrylamine was used to test model predictions for a simple charge-moving reaction. The voltage and frequency dependencies of the apparent dipicrylamine-induced capacitance, monitored by 1-mV sinusoidal perturbations, correspond to single charges moving across 76% of the membrane field at a rate of 9500 s-1 at 0 mV. For the cardiac Na,K pump, the combined presence of cytoplasmic ATP and sodium induces an increase of apparent membrane capacitance which requires the presence of extracellular sodium. The dependencies of capacitance changes on frequency, voltage, ATP, and sodium verify that phosphorylation enables a slow, 300- to 900-s-1, pump transition (the E1-E2 conformational change), which in turn enables fast, electrogenic, extracellular sodium binding reactions. For the GAT1 (gamma-aminobutyric acid,Na,Cl) cotransporter, expressed in Xenopus oocyte membrane, we find that chloride binding from the cytoplasmic side, and probably sodium binding from the extracellular side, results in a decrease of membrane capacitance monitored with 1- to 50-kHz perturbation frequencies. Evidently, ion binding by the GAT1 transporter suppresses an intrinsic fast charge movement which may originate from a mobility of charged residues of the transporter binding sites. The results demonstrate that fast capacitance measurements can provide new insight into electrogenic processes closely associated with ion binding by membrane transporters.
Resumo:
Complex three-dimensional waves of excitation can explain the observed cell movement pattern in Dictyostelium slugs. Here we show that these three-dimensional waves can be produced by a realistic model for the cAMP relay system [Martiel, J. L. & Goldbeter, A. (1987) Biophys J. 52, 807-828]. The conversion of scroll waves in the prestalk zone of the slug into planar wave fronts in the prespore zone can result from a smaller fraction of relaying cells in the prespore zone. Further, we show that the cAMP concentrations to which cells in a slug are exposed over time display a simple pattern, despite the complex spatial geometry of the waves. This cAMP distribution agrees well with observed patterns of cAMP-regulated cell type-specific gene expression. The core of the spiral, which is a region of low cAMP concentration, might direct expression of stalk-specific genes during culmination.
Resumo:
Three studies investigated the relation between symbolic gestures and words, aiming at discover the neural basis and behavioural features of the lexical semantic processing and integration of the two communicative signals. The first study aimed at determining whether elaboration of communicative signals (symbolic gestures and words) is always accompanied by integration with each other and, if present, this integration can be considered in support of the existence of a same control mechanism. Experiment 1 aimed at determining whether and how gesture is integrated with word. Participants were administered with a semantic priming paradigm with a lexical decision task and pronounced a target word, which was preceded by a meaningful or meaningless prime gesture. When meaningful, the gesture could be either congruent or incongruent with word meaning. Duration of prime presentation (100, 250, 400 ms) randomly varied. Voice spectra, lip kinematics, and time to response were recorded and analyzed. Formant 1 of voice spectra, and mean velocity in lip kinematics increased when the prime was meaningful and congruent with the word, as compared to meaningless gesture. In other words, parameters of voice and movement were magnified by congruence, but this occurred only when prime duration was 250 ms. Time to response to meaningful gesture was shorter in the condition of congruence compared to incongruence. Experiment 2 aimed at determining whether the mechanism of integration of a prime word with a target word is similar to that of a prime gesture with a target word. Formant 1 of the target word increased when word prime was meaningful and congruent, as compared to meaningless congruent prime. Increase was, however, present for whatever prime word duration. In the second study, experiment 3 aimed at determining whether symbolic prime gesture comprehension makes use of motor simulation. Transcranial Magnetic Stimulation was delivered to left primary motor cortex 100, 250, 500 ms after prime gesture presentation. Motor Evoked Potential of First Dorsal Interosseus increased when stimulation occurred 100 ms post-stimulus. Thus, gesture was understood within 100ms and integrated with the target word within 250 ms. Experiment 4 excluded any hand motor simulation in order to comprehend prime word. The effect of the prior presentation of a symbolic gesture on congruent target word processing was investigated in study 3. In experiment 5, symbolic gestures were presented as primes, followed by semantically congruent target word or pseudowords. In this case, lexical-semantic decision was accompanied by a motor simulation at 100ms after the onset of the verbal stimuli. Summing up, the same type of integration with a word was present for both prime gesture and word. It was probably subsequent to understanding of the signal, which used motor simulation for gesture and direct access to semantics for words. However, gesture and words could be understood at the same motor level through simulation if words were preceded by an adequate gestural context. Results are discussed in the prospective of a continuum between transitive actions and emblems, in parallelism with language; the grounded/symbolic content of the different signals evidences relation between sensorimotor and linguistic systems, which could interact at different levels.
Resumo:
Phytoplasmas are bacteria with a persistent propagative transmission by insect vectors that generates direct and indirect interactions among them. In order to understand these interactions for maize bushy stunt phytoplasma (MBSP) and the leafhopper vector Dalbulus maidis (Hemiptera: Cicadellidae), two research lines were addressed. The first one aimed to determine the indirect effects of maize infection by MBSP on some biological and behavioral parameters of the vector, whereas a second line investigated direct interactions of the phytoplasma with D. maidis during its movement through the vector body following acquisition from plants, and associated microbiota. Indirect effects were investigated in choice experiments in which alighting and oviposition preferences by D. maidis were compared on healthy vs. MBSP-infected plants with variable incubation time (diseased plants with early and advanced symptoms, or still asymptomatic). Likewise, indirect effect of MBSP on the D. maidis biology was determined in two life table experiments in which the vector was reared on healthy vs. MBSP-infected plants expressing advanced disease symptoms or still asymptomatic. Choice experiments showed that alighting and oviposition preferences of D. maidis on MBSP-infected plants compared to healthy plants depend on the pathogen incubation period in the plant. The leafhopper preferred MBSP-infected plants over healthy ones during the asymptomatic phase of the disease, but rejected infected plants with advanced symptoms. The vector was able to acquire MBSP from asymptomatic infected plants shortly (3 days) after inoculation, but transmission efficiency increased when acquisition occurred at later stages of the pathogen incubation period (≥14 days) in the source plants and the test plants showed disease symptoms faster. These results suggest that MBSP modulates D. maidis preference for asymptomatic infected plants in the early stages of the crop, allowing rapid spread of this pathogen. Maize infection by the phytoplasma had a neutral effect on most life table parameters of D. maidis; a lower net reproductivity rate (Ro) was observed in the cohort reared on MBSP-infected plants with advanced symptoms, which was compensated to some extent by a higher sexual ratio. MBSP acquisition by all vector nymphal stadia was confirmed by PCR, and the pathogen as detected in both male and female reproductive organs. Concerning direct MBSP-vector interactions, transmission electron microscopy analyses showed phytoplasma-like cells in the midgut lumen, microvilli and epithelial cells, suggesting that MBSP enters the epithelium midgut through the microvilli wall. Within the epithelial cells, mitochondria and bacteria-like cells (possibly endosymbionts) were observed together with masses of phythoplasma-like cells. In the hemocoel, phytoplasma-like cells grouped into a matrix were also observed in association with bacteria-like cells similar to those observed in the midgut epithelium. Similar associations were found in the salivary gland. Interestingly, in-situ hybridization (FISH) technique revealed a variation in diversity and abundance of the microbiota in intestine and salivary glands of D. maidis adults over time after MBSP acquisition from plants. Sulcia sp., Cardinium sp. and eubacteria increased their abundance over time, whereas Rickettsia sp. decreased. The frequent association of the vector microbiota with the phytoplasma in some tissues of D. maidis suggests that endosymbiotic bacteria may play some role in MBSP-vector interactions.
Resumo:
Ebola virus disease is a lethal human and primate disease that requires a particular attention from the international health authorities due to important recent outbreaks in some Western African countries and isolated cases in European and North-America continents. Regarding the emergency of this situation, various decision tools, such as mathematical models, were developed to assist the authorities to focus their efforts in important factors to eradicate Ebola. In a previous work, we have proposed an original deterministic spatial-temporal model, called Be-CoDiS (Between-Countries Disease Spread), to study the evolution of human diseases within and between countries by taking into consideration the movement of people between geographical areas. This model was validated by considering numerical experiments regarding the 2014-16 West African Ebola Virus Disease epidemic. In this article, we propose to perform a stability analysis of Be-CoDiS. Our first objective is to study the equilibrium states of simplified versions of this model, limited to the cases of one an two countries, and to determine their basic reproduction ratios. Then, in order to give some recommendations for the allocation of resources used to control the disease, we perform a sensitivity analysis of those basic reproduction ratios regarding the model parameters. Finally, we validate the obtained results by considering numerical experiments based on data from the 2014-16 West African Ebola Virus Disease epidemic.
Resumo:
Exposure to intimate partner violence (IPV) puts women at risk for severe and chronic physical and mental health consequences, including elevations in IPV-related psychopathology and increased risk for future victimization. Previous research has examined attention as one of the key information processing mechanisms associated with elevated psychopathology and risk for victimization; however, the nature of attentional processing in response to IPV-related information in women exposed to IPV is poorly understood. Therefore, the current study aimed to further understanding of associations between attentional processing, IPV exposure, and related distress using measures of eye movement and subjective interpretations of IPV-related information. A sample of women exposed to IPV (n = 57) viewed sets of negative, positive, and neutral relationship images for 15 s each while having their eye movements monitored and later provided subjective ratings and interpretations of levels of risk and safety in those images. We examined associations of outcome measures with proximal victimization experiences and IPV-related psychopathology (i.e., depression, posttraumatic stress disorder (PTSD), anxiety, and dissociation). Results indicated a bias to attend to negative relationship images relative to positive and neutral images, though this attention bias fluctuated over time and varied as a function of symptomatology such that depression corresponded with increases in attention to negative images over time and PTSD corresponded with decreases in attention to negative images. The general attention bias for negative images appeared to be explained by rumination on and/or difficulty disengaging from negative images, which was related to general elevations in psychopathology as well as exposure to revictimization by different perpetrators. Subjective interpretations and perception of danger cues were related to victimization history and level and type of IPV-related distress. We replicated these procedures with a sample of undergraduate students without IPV histories or related symptomatology (n = 33) and found that the overall attention bias for negative images was not replicated, despite general similarities in patterns of attention over time. Results therefore indicated associations between attentional processing and IPV exposure and related symptomatology. Implications for models of IPV-related psychopathology and attentional processing as well as directions for future study and interventions are discussed.
Resumo:
This paper will explore how white privilege has been intertwined with the women's liberation movement in the United States. Feminism and its goals are described briefly and linked to an evaluation of white privilege within the movement. The feminist movement is explored throughout its three waves, including a class and race analysis of each separate period. In addition, this analysis focuses on how Black and Chicana women have been excluded from the mainstream, White, middle-class movement. Through the use of Social Dominance Theory (Sidanius & Pratto, 1999), the prevalence and impact of oppression and hierarchy are explored. The implications of oppression and exclusion in the current political climate are followed by suggestions for aligning the goals and direction of feminism with social justice.
Resumo:
"Artist Laura Anne Fry blended the concepts of professional and amateur, and helped raise the merit of ceramics in the United States. Fry influenced American art pottery with her contributions to Rookwood Pottery of Cincinnati—changing the course of the company. Her successful experiments with decorating techniques helped Rookwood become a national leader in art pottery, and eventually led to over a decade of controversy between Fry and Rookwood"
Resumo:
This paper analyzes post-pornographic practices – an activist and theoretical movement that recognizes pornography as valuable in understanding social, cultural, and political systems that construct and reflect identity – through the work of American artist Marilyn Minter. The analysis contextualizes post-pornography and concludes with an examination of several of Minter’s recent paintings and photographs through a postpornographic lens to assert that these examples of her work explore sexuality and gender by incorporating aesthetic and ideological references to porn and by invoking the postpornographic tenets of collaboration, disruption of public space, and the inversion of heteronormativity. Creating art with Wangechi Mutu, displaying in Times Square high definition videos of lips that slurp green goo, and painting men garbed in lingerie constitute some of Minter’s endeavors, which reenvision pornographic relationships to authorship and agency, public versus private space, and the expression or repression of fantasy.
Resumo:
The history of community television shows that it has been a home to activist and non-profit organizations that have created programs focused on freedom of speech. This project proposes that community television is also a place where artists can have freedom of artistic expression. The reflective paper reviews the creation of my film designed to inform and attract artists to community television. In it I critically reflect on the artistic, technical, artistic/technical, and production changes made throughout my journey from being a visual artist to becoming a video-artist. The reflective paper, along with the film, act as a wake-up call to artists who are unaware of community television and the advantages it has to offer them.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
Comunicación presentada en el X Workshop of Physical Agents, Cáceres, 10-11 septiembre 2009.
Resumo:
Subpixel methods increase the accuracy and efficiency of image detectors, processing units, and algorithms and provide very cost-effective systems for object tracking. Published methods achieve resolution increases up to three orders of magnitude. In this Letter, we demonstrate that this limit can be theoretically improved by several orders of magnitude, permitting micropixel and submicropixel accuracies. The necessary condition for movement detection is that one single pixel changes its status. We show that an appropriate target design increases the probability of a pixel change for arbitrarily small shifts, thus increasing the detection accuracy of a tracking system. The proposal does not impose severe restriction on the target nor on the sensor, thus allowing easy experimental implementation.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.