993 resultados para Mittag-Leffler Distribution
Resumo:
The direct measurement of in situ respiring bacteria using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) shows that, especially for Gram-negative bacteria, large numbers of viable but non-culturable (VBNC) bacteria are present in finished water from a conventional water treatment plant, and the regrowth of bacteria along distribution networks can be seen rapidly by using this very sensitive technique. The level of bacterial inactivation with chlorine is much less important than has been previously supposed (based on experiments with non-injured laboratory strains of bacteria and classical culture techniques). Threshold values of VBNC bacteria leaving water treatment plants or regrowing along distribution systems have to be determined for better control of coliform regrowth and health- risks associated with the consumption of drinking water.
Resumo:
In drinking water distribution systems, three groups of living organisms are usually found in the biofilm and circulating water: heterotrophic bacteria, free-living protozoa, and macro-invertebrates. Indirect evidence suggests that protozoa grazing in distribution systems can partially eliminate biomass production and accidental microbiological pollution. This paper examines the biodiversit in drinking water distribution systems.
Resumo:
On the basis of the space-time Wigner distribution function (STWDF), we use the matrix formalism to study the propagation laws for the intensity moments of quasi-monochromatic and polychromatic pulsed paraxial beams. The advantages of this approach are reviewed. Also, a least-squares fitting method for interpreting the physical meaning of the effective curvature matrix is described by means of the STWDF. Then the concept is extended to the higher-order situation, and what me believe is a novel technique for characterizing the beam phase is presented. (C) 1999 Optical Society of America [S0740-3232(99)001009-1].
Resumo:
This doctoral Thesis defines and develops a new methodology for feeder reconfiguration in distribution networks with Distributed Energy Resources (DER). The proposed methodology is based on metaheuristic Ant Colony Optimization (ACO) algorithms. The methodology is called Item Oriented Ant System (IOAS) and the doctoral Thesis also defines three variations of the original methodology, Item Oriented Ant Colony System (IOACS), Item Oriented Max-min Ant System (IOMMAS) y Item Oriented Max-min Ant Colony System (IOACS). All methodologies pursue a twofold objective, to minimize the power losses and maximize DER penetration in distribution networks. The aim of the variations is to find the algorithm that adapts better to the present optimization problem, solving it most efficiently. The main feature of the methodology lies in the fact that the heuristic information and the exploitation information (pheromone) are attached to the item not to the path. Besides, the doctoral Thesis proposes to use feeder reconfiguration in order to increase the distribution network capacity of accepting a major degree of DER. The proposed methodology and its three variations have been tested and verified in two distribution networks well documented in the existing bibliography. These networks have been modeled and used to test all proposed methodologies for different scenarios with various DER penetration degrees.
Resumo:
The endangered Florida snail kite (Rostrhamlls sociaiJilis) feeds exclusively on applesnails (Pomacea pailiclosa), yet we lack direct observations that link applesnail behavior to snail kite foraging success. The purpose of our study was to evaluate the temperature-activity profile of applesnails in the context of restricted foraging opportunities for snail kites. Applesnail activity was monitored in water temperatures ranging from 2-24
Resumo:
We compared the density and biomass of resident fish in vegetated and unvegetated flooded habitats of impounded salt marshes in the northern Indian River Lagoon (IRL) Estuary of east-central Florida. A 1-m2 throw trap was used to sample fish in randomly located, paired sample plots (n = 198 pairs) over 5 seasons in 7 impoundments. We collected a total of 15 fish taxa, and 88% of the fishes we identified from the samples belonged to three species: Cyprinodon variegatus (Sheepshead Minnow), Gambusia holbrooki (Eastern Mosquitofish), and Poecilia latipinna (Sailfin Molly). Vegetated habitat usually had higher density and biomass of fish. Mean fish density (and 95% confidence interval) for vegetated and unvegetated sites were 8.2 (6.7–9.9) and 2.0 (1.6–2.4) individuals m-2, respectively; mean biomass (and 95% confidence interval) for vegetated and unvegetated sites were 3.0 (2.5–3.7) and 1.1 (0.9–1.4) g m-2, respectively. We confirmed previous findings that impounded salt marshes of the northern IRL Estuary produce a high standing stock of resident fishes. Seasonal patterns of abundance were consistent with fish moving between vegetated and unvegetated habitat as water levels changed in the estuary. Differences in density, mean size, and species composition of resident fishes between vegetated and unvegetated habitats have important implications for movement of biomass and nutrients out of salt marsh by piscivores (e.g., wading birds and fishes) via a trophic relay.
Resumo:
Fields in subwavelength-diameter terahertz hollow optical fiber (STHOF) can be intensified by large discontinuity of the electric field at high index contrast interfaces. The influences of fiber geometry and refractive index of the dielectric region on the fiber characteristics, such as power distribution, enhancement factor, have been discussed in detail. By appropriate design, the intensity in the central region of STHOF may be enhanced by a factor of greater than 1.5 compared with subwavelength-diameter terahertz fiber without the central hole and the loss can be reduced. For its compact structure and simple fabrication process, the fiber may be very useful in many miniaturized high performance and novel terahertz photonic devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The three-dimensional distribution of light intensity that is modulated by a pure phase-shifting apodizer is studied. Results show that the Strehl ratio can be altered by the proposed apodizer and by the waist width of incident Gaussian beams. By changing geometrical parameters of the proposed apodizer, we can increase the focal depth to several times that of the original system. The proposed apodizer can also be used to realize focal splitting and local minimum of intensity, which may be advantageous for constructing an optical trap. Furthermore, the local minimum of intensity number is tunable by changing the parameters of the apodizer. (c) 2005 Optical Society of America
Resumo:
Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16 degrees C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.
Resumo:
Partially end-pumped slab laser is an innovative solid state laser, namely InnoSlab. Combining the hybrid resonator with partially end-pumping, the output power can be scaled with high beam quality. In this paper, the output intensity distributions are simulated by coordinate transformation fast Fourier transform (FFT) algorithm, comparing the thermal lens influence. As the simulated curves showed, the output mode is still good when the thermal lens effect is strong, indicating the good thermal stability of InnoSlab laser. Such a new kind of laser can be designed and optimized on the base of this simulation.
Resumo:
A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.
Resumo:
In the early 20th century, a blue mussel species from the Mediterranean invaded the California coast and subsequently out-competed the native species south of Monterey Bay. Like other invasive species, Mytilus galloprovincialis has physiological traits that make it successful in habitats formerly occupied by the native M. trossulus, namely its adaptation to warm sea surface temperatures. This study looks at the current genotype distributions and enzymatic activities of field-acclimatized mussels within the hybrid zone where the species co-occur as well as mussels that have been acclimated for four weeks to different temperature and salinity conditions. In the field-acclimatized and laboratory-acclimated mussels, the native species exhibited significantly higher enzyme rates, which may reflect an evolutionary adaptation to compensate to low habitat temperatures. Indeed, the results of the laboratory acclimation indicate that these differences are genetically based. Whether an acclimation capacity exists may require even longer-term acclimation to different temperatures. Current findings suggest that the further spread of the invasive species is likely to be governed in large measure by the potentially counteracting effects of rising temperatures, which would favor the northerly spread of M. galloprovincialis, and increased winter precipitation, which would favor the persistence of M. trossulus. However, the success of M. galloprovincialis during acclimation to ‘dilute’ salinity (25 ppt) suggests that the invasive species can tolerate a greater salinity range than previously thought. Thus, further investigation is needed to build a comprehensive predictive model of the movement of M. galloprovincialis and the hybrid zone along the California coast.
Resumo:
FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.