934 resultados para Microbial infections
Resumo:
This thesis deals initially with a literature reference survey ,taxonomy, their incidence in selected food fishes and shellfishes, and their incidence and distribution, their survival during different types of processing, their heat survival at temperatures of 50 ,55 and 60 degree centigrade their growth initiation at different low levels of pHs(4.0 to 10) ,and their developmental resistance to various chemical agents. The trials for the study were collected from various landing centre at cochin and the retail outlets. Based on these data collections the researcher was able to obtain more knowledge of the processing technology and the survival of pathogens like salmonella and vibrio parahaemolyticus.
Resumo:
Strychnine is the major alkaloid present in the seeds of _Strychnos, nuxvomica tree which grow naturally in this area. Strychnine has a very complex chemical structure and is known to stimulate all portions of the central nervous system with preference to the spinal cord. However, it is a powerful convulsant and death results from asphyxia. Consequently strychnine has no therapeutic application in the western system of medicine at present. The objective of this work, therefore, was to convert strychnine by microbial transformation into a product having more desirable pharmacological properties so that this locally available natural product may find some use in the preparation of a therapeutic agent.
Resumo:
There is no baseline data available at present on the nature of various diseases that occur in a orchid population, under cultivation, in any commercial orchid farm maintained by small scale entrepreneurs who invest considerable amount of money, effort and time. The available data on type of disease symptoms, causative agent, , nature of pathogens, as to bacteria or ftmgi or any other biological agents, and their source, appropriate and effective control measures could not be devised, for large scale implementation and effective management, although arbitrary methods are being practiced by very few farms. Further influence of seasonal variations and environmental factors on disease outbreak is also not scientifically documented and statistically verified as to their authenticity. In this context, the primary objective of the present study was to create a data bank on the following aspects 1. Occurrence of different disease symptoms in Dendrobium hybrid over a period of one year covering all seasons 2. Variations in the environmental parameters at the orchid farms 3. Variations in the characteristics of water used for irrigation in the selected orchid farm 4. Microbial population associated with the various disease symptoms 5. Isolation and identification of bacteria isolated from diseased plants 6. Statistical treatment of the quantitative data and evolving statistical model
Resumo:
A critical survey of the fruits and vegetable markets of the towns and cities in South India reveals that banana fruit stalk wastes share a dominant proportion among the solid wastes generated. In the light of the review of literature presented in the foregoing section, few reports are available on the utilisation of banana waste for the production of alcoholic beverages, biogas, and single cell protein. However, it is not yet tried for the production of industrial enzymes. Moreover, preliminary fermentation studies conducted under uncontrolled conditions revealed that banana fruit stalk could be aptly utilised as solid substrate? for the industrial production of microbial amylases and cellulases at a cheaper cost. Therefore, it was proposed to conduct a detailed study towards the development of a suitable fermentation process for the production of industrial enzymes using banana fruit stalk wastes, which is rich in carbohydrate, as solid substrate, employing bacteria, under SSF.
Resumo:
Soil microorganisms play a main part in organic matter decomposition and are consequently necessary to soil ecosystem processes maintaining primary productivity of plants. In light of current concerns about the impact of cultivation and climate change on biodiversity and ecosystem performance, it is vital to expand a complete understanding of the microbial community ecology in our soils. In the present study we measured the depth wise profile of microbial load in relation with important soil physicochemical characteristics (soil temperature, soil pH, moisture content, organic carbon and available NPK) of the soil samples collected from Mahatma Gandhi University Campus, Kottayam (midland region of Kerala). Soil cores (30 cm deep) were taken and the cores were separated into three 10-cm depths to examine depth wise distribution. In the present study, bacterial load ranged from 141×105 to 271×105 CFU/g (10cm depth), from 80×105 to 131×105 CFU/g (20cm depth) and from 260×104 to 47×105 CFU/g (30cm depth). Fungal load varies from 124×103 to 27×104 CFU/g, from 61×103 to110×103 CFU/g and from 16×103 to 49×103 CFU/g at 10, 20 and 30 cm respectively. Actinomycetes count ranged from 129×103 to 60×104 CFU/g (10cm), from 70×103 to 31×104 CFU/g (20cm) and from 14×103 to 66×103 CFU/g (30cm). The study revealed that there was a significant difference in the depthwise distribution of microbial load and soil physico-chemical properties. Bacterial, fungal and actinomycetes load showed a decreasing trend with increasing depth at all the sites. Except pH all other physicochemical properties showed decreasing trend with increasing depth. The vertical profile of total microbial load was well matched with the depthwise profiles of soil nutrients and organic carbon that is microbial load was highest at the soil surface where organics and nutrients were highest
Resumo:
Biosurfactants are surface active compounds released by microorganisms. They are biodegradable non-toxic and eco-friendly materials. In this review we have updated the information about different microbial surfactants. The biosurfactant production depends on the fermentation conditions, environmental factors and nutrient availability. The extraction of the biosurfactants from the cell-free supernatant using the solvent extraction procedure and the qualitative and quantitative analysis has been discussed with appropriate equipment details. The application of the biosurfactant includes biomedical, cosmetic and bioremediation. The type of microbial biosurfactants include trehalose lipids, rhamnolipids, sophorolipids, glycolipids, cellobiose lipids, polyol lipids, diglycosyl diglycerides, lipoloysaccharides, arthrofactin, lichensyn A and B, surfactin, viscosin, phospholipids, sulphonyl lipids and fatty acids. Rhamnolipid biosurfactants produced by Pseudomonas aeruginosa DS10-129 showed significant applications in the bioremediation of hydrocarbons in gasoline spilled soil and petroleum oily sludge. Rhamnolipid biosurfactant enhanced the bioremediation process by releasing the weathered oil from the soil matrices and enhanced the bioavailability of hydrocarbons for microbial degradation. It is having potential applications in the remediation of hydrocarbon contaminated sites. Biosurfactants from marine microorganisms also offer great potential in bioremediation of oil contaminated oceanic environments
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
Bacteriological quality of individually quick frozen (IQF) shrimp products produced from aquacultured tiger shrimp (Penaeus monodon) has been analysed in terms of aerobic plate count (APC), coliforms, Escherichia coli, coagulase-positive staphylococci, Salmonella, and Listeria monocytogenes. Eight hundred forty-six samples of raw, peeled, and deveined tail-on (RPTO), 928 samples of cooked, peeled, and deveined tail-on (CPTO), 295 samples of headless, undeveined shell-on (HLSO), and 141 samples of raw, peeled, and deveined tail-off (RPND) shrimps were analysed for the above bacteriological parameters. Salmonella was isolated in only one sample of raw, peeled tail-on. Serotyping of the strain revealed that it was S. typhimurium. While none of the cooked, peeled tail-on shrimp samples exceeded the aerobic plate count (APC) of 105 colony forming units per gram (cfu/g), 2.5% of raw, peeled, tail-on, 6.4% of raw, peeled tail-off, and 7.5% of headless shell-on shrimp samples exceeded that level. Coliforms were detected in all the products, though at a low level. Prevalence of coliforms was higher in headless shell-on (26%) shrimps followed by raw, peeled, and deveined tail-off (19%), raw, peeled tail-on (10%), and cooked, peeled tail-on (3.8%) shrimps. While none of the cooked, peeled tail-on shrimp samples were positive for coagulase-positive staphylococci and E. coli, 0.6–1.3% of the raw, peeled tail-on were positive for staphylococci and E. coli, respectively. Prevalence of staphylococci was highest in raw, peeled tail-off (5%) shrimps and the highest prevalence of E. coli (4.8%) was noticed in headless shell-on shrimps. L. monocytogenes was not detected in any of the cooked, peeled tail-on shrimps. Overall results revealed that the plant under investigation had exerted good process control in order to maintain superior bacteriological quality of their products
Resumo:
Many of the existing methods for the treatment of rubber latex centrifugation eflluent are not only unsatisfactory in their efliciency to effect near perfect treatment in bringing down the COD to optimum level, but also time consuming and need a large landspace. As the rate of effluent generation is extremely high (20 litres for kilogram of rubber) there is a need for development of efficient system,capable of rapid reduction of COD and BOD. Though the organic load of the rubber efiluent is very high, it does not contain much processed chemicals and therefore it can be considered as a ‘biological eflluent’. Further, the ratio of the Chemical Oxygen Demand to Biological Oxygen Demand (COD/BOD) of this effluent remain almost as a constant value. According to Montgomery (1967), estimation of BOD is not ideally suited for studies on process design, treatability, control of treatment plants, setting standards for treated effluents and assessing the effect of polluting discharges on the oxygen resources of receiving waters. Hence in the present study COD was measured to determine the impact of treatment system on the effluent. In the present study, attempts were made to evaluate the efficiencies of certain methods such as packed bed reactor using immobilized microbial cells, rotating biological contactor (RBC) and activated sludge process, for rapid and efficient treatment of natural rubber latex centrifugation effluent. In addition, studies were also carn'ed out to develop a suitable bioprocess for the coagulation of skim latex, as an alternative to the presently used acid coagulation process towards reducing the pollution load, besides recovering quality rubber
Resumo:
Unprocessed seafood harbor high number of bacteria, hence are more prone to spoilage. In this circumstance, the use of spice in fish for reduction of microorganism can play an important role in seafood processing. Many essential oils from herbs and spices are used widely in the food, health and personal care industries and are classified as GRAS (Generally regarded as safe) substances or are permitted food additives. A large number of these compounds have been the subject of extensive toxicological scrutiny. However, their principal function is to impart desirable flavours and aromas and not necessarily to act as antimicrobial agents. Given the high flavour and aroma impact to plant essential oils, the future for using these compound as food preservatives lies in the careful selection and evaluation of their efficacy at low concentrations but in combination with other chemical preservatives or preservation processes. For this reason they are worth of study alone or in combination with processing methods in order to establish if they could extend the shelf-life of foods. In this study, the effect of the spices, clove, turmeric, cardamom, oregano, rosemary and garlic in controlling the spoilage and pathogenic bacteria is investigated. Their effect on biogenic amine formation in tuna especially, histamine, as a result of bacterial control is also studied in detail. The contribution of spice oleoresin in the sensory and textural parameters is investigated using textural profile analysis and sensory panel. Finally, the potential of spices in quality stabilization and in increasing the shelf–life of tuna during frozen storage is analysed
Resumo:
3.4. Lipase (EC-3.1. 1.3) 3.5. Other Known Enzymes 3.6. Extremozymes (Enzymes from extremophiles) 3.7. Recognition of Valuable Extremozymes 4. Enzymes as Tools in Biotechnology 4.1. Restriction Enzymes from Marine Bacteria 4.2. Other Nucleases from Marine Bacteria 4.3. Bacteriolytic Enzyme by Bacteriophage from Seawater 5. Innovations in Enzyme Technology 5.1. Enzyme Engineering 5.2. Immobilization Technology 5.3. Gene Cloning for Marine Enzymes 6. Future Prospects
Resumo:
Protease inhibitors can be versatile tools mainly in the fields of medicine, agriculture and food preservative applications. Fungi have been recognized as sources of protease inhibitors, although there are only few such reports on mushrooms. This work reports the purification and characterization of a trypsin inhibitor from the fruiting body of edible mushroom Pleurotus floridanus (PfTI) and its effect on the activity of microbial proteases. The protease inhibitor was purified up to 35-fold by DEAE-Sepharose ion exchange column, trypsin-Sepharose column and Sephadex G100 column. The isoelectric point of the inhibitor was 4.4, and its molecular mass was calculated as 37 kDa by SDS-PAGE and 38.3 kDa by MALDI-TOF. Inhibitory activity confirmation was by dot-blot analysis and zymographic activity staining. The specificity of the inhibitor toward trypsin was with Ki of 1.043×10−10 M. The inhibitor was thermostable up to 90 °C with maximal stability at 30 °C, active over a pH range of 4–10 against proteases from Aspergillus oryzae, Bacillus licheniformis, Bacillus sp. and Bacillus amyloliquefaciens. Results indicate the possibility of utilization of protease inhibitor from P. floridanus against serine proteases
Resumo:
In the present study diversity of E. coli in the water samples of Cochin estuary were studied for a period of 3 years ranging from January 2010- December 2012. The stations were selected based on the closeness to satellite townships and waste input. Two of the stations (Chitoor and Thevara) were fixed upstream, two in the central part of the estuary namely Bolgatty and Off Marine Science Jetty, and one at the Barmouth. Diversity was assessed in terms of serotypes, phylogenetic groups and genotypes. Two groups of seafood samples such as fish and shellfish collected from the Cochin estuary were used for isolation of E. coli. One hundred clinical E. coli isolates were collected from one public health centre, one hospital and five medical labs in and around Cochin City, Kerala. From our results it was clear that pathogen cycling is occurring through food, water and clinical sources. Pathogen cycling through food is very common and fish and shellfish that harbour these strains might pose potential health risk to consumer. Estuarine environment is a melting pot for various kinds of wastes, both organic and inorganic. Mixing up of waste water from various sources such as domestic, industries, hospitals and sewage released into these water bodies resulting in the co-existence of E. coli from various sources thus offering a conducive environment for horizontal gene transfer. Opportunistic pathogens might acquire genes for drug resistance and virulence turning them to potential pathogens. Prevalence of ExPEC in the Cochin estuary, pose threat to people who use this water for fishing and recreation. Food chain also plays an important role in the transit of virulence genes from the environments to the human. Antibiotic resistant E. coli are widespread in estuarine water, seafood and clinical samples, for reasons well known such as indiscriminate use of antibiotics in animal production systems, aquaculture and human medicine. Since the waste water from these sources entering the estuary provides selection pressure to drug resistant mutants in the environment. It is high time that the authorities concerned should put systems in place for monitoring and enforcement to curb such activities. Microbial contamination can limit people’s enjoyment of coastal waters for contact recreation or shellfish-gathering. E. coli can make people sick if they are present in high levels in water used for contact recreation or shellfish gathering. When feeding, shellfish can filter large volumes of seawater, so any microorganisms present in the water become accumulated and concentrated in the shellfish flesh. If E. coli contaminated shellfish are consumed the impact to human health includes gastroenteritis, urinary tract infections (UTIs), and bacteraemia. In conclusion, the high prevalence of various pathogenic serotypes and phylogenetic groups, multidrug-resistance, and virulence factor genes detected among E. coli isolates from stations close to Cochin city is a matter of concern, since there is a large reservoir of antibiotic resistance genes and virulence traits within the community, and that the resistance genes and plasmid-encoded genes for virulence were easily transferable to other strains. Given the severity of the clinical manifestations of the disease in humans and the inability and/or the potential risks of antibiotic administration for treatment, it appears that the most direct and effective measure towards prevention of STEC and ExPEC infections in humans and ensuring public health may be considered as a priority.
Resumo:
This thesis consists of 4 main parts: (1) impact of growing maize on the decomposition of incorporated fresh alfalfa residues, (2) relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab, (3) decomposition of compost and plant residues in Pakistani soils along a gradient in salinity, and (4) interactions of compost and triple superphosphate on the growth of maize in a saline Pakistani soil. These 4 chapters are framed by a General Introduction and a Conclusions section. (1) In the first study, the effects of growing maize plants on the microbial decomposition of freshly chopped alfalfa residues was investigated in a 90-day pot experiment using a sandy arable soil. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 27% of the alfalfa residues were found as CO2. This suggests that a considerable part of alfalfa-C remained undecomposed in the soil. However, only 6% of the alfalfa residues could be recovered as plant remains in treatment with solely alfalfa residues. Based on d13C values, it was calculated that plant remains in treatment maize + alfalfa residues contained 14.7% alfalfa residues and 85.3% maize root remains. This means 60% more alfalfa-C was recovered in this treatment. (2) In the second study, the interactions between soil physical, soil chemical and soil biological properties were analysed in 30 Pakistani soils from alkaline and saline arable sites differing strongly in salinisation and in soil pH. The soil biological properties were differentiated into indices for microbial activity, microbial biomass, and community structure with the aim of assessing their potential as soil fertility indices. (3) In the third study, 3 organic amendments (compost, maize straw and pea straw) were added to 5 Pakistani soils from a gradient in salinity. Although salinity has depressive effects on microbial biomass C, biomass N, biomass P, and ergosterol, the clear gradient according to the soil salt concentration was not reflected by the soil microbial properties. The addition of the 3 organic amendments always increased the contents of the microbial indices analysed. The amendment-induced increase was especially strong for microbial biomass P and reflected the total P content of the added substrates. (4) The fourth study was greenhouse pot experiment with different combinations of compost and triple superphosphate amendments to investigate the interactions between plant growth, microbial biomass formation and compost decomposition in a strongly saline Pakistani arable soil in comparison to a non-saline German arable soil. The Pakistani soil had a 2 times lower content of ergosterol, a 4 times lower contents of microbial biomass C, biomass N and biomass P, but nearly a 20 times lower content of NaHCO3 extractable P. The addition of 1% compost always had positive effects on the microbial properties and also on the content of NaHCO3 extractable P. The addition of superphosphate induced a strong and similar absolute increase in microbial biomass P in both soils.
Resumo:
An important feature of maintaining the agricultural stability in millennia-old mountain oases of northern Oman is the temporary abandonment of terraces. To analyse the effects of a fallow period on soil microbial performance, i.e. microbial activity and microbial biomass, samples of eight terrace soils abandoned for different periods were collected in situ, assigned to four fallow age classes and incubated for 30 days in the laboratory after rewetting. The younger fallow age classes of 1 and 5 years were based on the records of the farmers’ recollections, the two older fallow age classes of 10–20 and 25–60 years according to the increase in the D -to- L ratio of valine and leucine enantiomers. The increase in these two ratios was in agreement with that of the D -to- L ratio of lysine. The strongest relationship was observed between the increase in the D -to- L ratio of lysine and the decrease in soil microbial biomass C. However, the most stringent coherence between the increase in fallow age and soil properties was revealed by the decreases in cumulative respiration and net N mineralisation rates with decreasing availability of substrate to soil microorganisms. During the 30-day incubation following rewetting, relative changes in microbial activity (respiration and net N mineralisation) and microbial biomass (C and N)indices were similar in the eight terrace soils on a fallow age-class-specific level, indicating that the same basic processes occurred in all of the sandy terrace soils investigated.