934 resultados para Meteorology and atmospheric dynamics
Resumo:
En el presente trabajo se presenta una revisión sobre los modelos forestales desarrollados en España durante los últimos años, tanto para la producción maderable como no maderable y, para la dinámica de los bosques (regeneración, mortalidad). Se presentan modelos tanto de rodal completo como de clases diamétricas y de árbol individual. Los modelos desarrollados hasta la fecha se han desarrollado a partir de datos procedentes de parcelas permanentes, ensayos y el Inventario Forestal Nacional. En el trabajo se muestran los diferentes submodelos desarrollados hasta la fecha, así como las plataformas informáticas que permiten utilizar dichos modelos. Se incluyen las principales perspectivas de desarrollo de la modelización forestal en España.
Resumo:
The impact, on nitrogen and phosphorous dynamics, of applying compost at different rates was investigated in soils developed on schist in new terraced vineyards (NTV) and in undisturbed areas (NC). Repacked soil columns amended with 0 (control), 50 t ha –1 (T1) and 100 t ha–1 (T2) of compost were studied under laboratory conditions simulating both situations. The columns were maintained for 1 year, during which time a total of 300 mm of simulated rainfall was applied in ten 30 mm applications. Soil organic matter (OM), nitrogen and phosphorous contents were analysed at the end of the study period and leachates were analysed after each simulated rainfall event. Significant differences in nitrate leaching were observed between the control and the treated soils and these differences were greater in the NC (control = 1.368 g, T1 = 1.526 g and T2 = 1.686 g) than in the NTV soils (control = 0.61 g, T1 = = 1.068 g and T2 = 1.283 g). The relative effect was greater in the NTV soils (T1/control = 1.11 vs. 1.75 and T2/control = 1.23 vs. 2.1 for NC and NTV, respectively). The nitrate concentration in the leached water reached up to 400 mg L–1, which implied a risk of groundwater pollution. Phosphorous losses through leaching were very low with concentrations of < 0.15 mg L–1, without any significant differences between treatments. The phosphorous concentrations in the surface horizon increased by 50.8% in T1 and by 66.8% in T2 in the NC soils, compared with increases of 20.3% and 38%, respectively, in the NTV soils. Due to the high infiltration capacity of the study soils, leaching effects must be considered in order to prevent groundwater pollution.
Resumo:
The linking of North and South America by the Isthmus of Panama had major impacts on global climate, oceanic and atmospheric currents, and biodiversity, yet the timing of this critical event remains contentious. The Isthmus is traditionally understood to have fully closed by ca. 3.5 million years ago (Ma), and this date has been used as a benchmark for oceanographic, climatic, and evolutionary research, but recent evidence suggests a more complex geological formation. Here, we analyze both molecular and fossil data to evaluate the tempo of biotic exchange across the Americas in light of geological evidence. We demonstrate significant waves of dispersal of terrestrial organisms at approximately ca. 20 and 6 Ma and corresponding events separating marine organisms in the Atlantic and Pacific oceans at ca. 23 and 7 Ma. The direction of dispersal and their rates were symmetrical until the last ca. 6 Ma, when northern migration of South American lineages increased significantly. Variability among taxa in their timing of dispersal or vicariance across the Isthmus is not explained by the ecological factors tested in these analyses, including biome type, dispersal ability, and elevation preference. Migration was therefore not generally regulated by intrinsic traits but more likely reflects the presence of emergent terrain several millions of years earlier than commonly assumed. These results indicate that the dramatic biotic turnover associated with the Great American Biotic Interchange was a long and complex process that began as early as the Oligocene-Miocene transition.
Resumo:
Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.
Resumo:
Fluorescence microscopy has enabled the analysis of both the spatial distribution of DNA damage and its dynamics during the DNA damage response (DDR). Three microscopic techniques can be used to study the spatiotemporal dynamics of DNA damage. In the first part we describe how we determine the position of DNA double-strand breaks (DSBs) relative to the nuclear envelope. The second part describes how to quantify the co-localization of DNA DSBs with nuclear pore clusters, or other nuclear subcompartments. The final protocols describe methods for the quantification of locus mobility over time.
Resumo:
Already in ancient Greece, Hippocrates postulated that disease showed a seasonal pattern characterised by excess winter mortality. Since then, several studies have confirmed this finding, and it was generally accepted that the increase in winter mortality was mostly due to respiratory infections and seasonal influenza. More recently, it was shown that cardiovascular disease (CVD) mortality also displayed such seasonality, and that the magnitude of the seasonal effect increased from the poles to the equator. The recent study by Yang et al assessed CVD mortality attributable to ambient temperature using daily data from 15 cities in China for years 2007-2013, including nearly two million CVD deaths. A high temperature variability between and within cities can be observed (figure 1). They used sophisticated statistical methodology to account for the complex temperature-mortality relationship; first, distributed lag non-linear models combined with quasi-Poisson regression to obtain city-specific estimates, taking into account temperature, relative humidity and atmospheric pressure; then, a meta-analysis to obtain the pooled estimates. The results confirm the winter excess mortality as reported by the Eurowinter3 and other4 groups, but they show that the magnitude of ambient temperature.
Resumo:
We investigate how correlations between the diversity of the connectivity of networks and the dynamics at their nodes affect the macroscopic behavior. In particular, we study the synchronization transition of coupled stochastic phase oscillators that represent the node dynamics. Crucially in our work, the variability in the number of connections of the nodes is correlated with the width of the frequency distribution of the oscillators. By numerical simulations on Erdös-Rényi networks, where the frequencies of the oscillators are Gaussian distributed, we make the counterintuitive observation that an increase in the strength of the correlation is accompanied by an increase in the critical coupling strength for the onset of synchronization. We further observe that the critical coupling can solely depend on the average number of connections or even completely lose its dependence on the network connectivity. Only beyond this state, a weighted mean-field approximation breaks down. If noise is present, the correlations have to be stronger to yield similar observations.
Resumo:
Reggies/flotillins are implicated in trafficking of membrane proteins to their target sites and in the regulation of the Rab11a-dependent targeted recycling of E-cadherin to adherens junctions (AJs). Here we demonstrate a function of reggies in focal adhesion (FA) formation and α5- and β1-integrin recycling to FAs. Downregulation of reggie-1 in HeLa and A431 cells by siRNA and shRNA increased the number of FAs, impaired their distribution and modified FA turnover. This was coupled to enhanced focal adhesion kinase (FAK) and Rac1 signaling and gain in plasma membrane motility. Wild type and constitutively-active (CA) Rab11a rescued the phenotype (normal number of FAs) whereas dominant-negative (DN) Rab11a mimicked the loss-of-reggie phenotype in control cells. That reggie-1 affects integrin trafficking emerged from the faster loss of internalized antibody-labeled β1-integrin in reggie-deficient cells. Moreover, live imaging using TIRF microscopy revealed vesicles containing reggie-1 and α5- or β1-integrin, trafficking close to the substrate-near membrane and making kiss-and-run contacts with FAs. Thus, reggie-1 in interaction with Rab11a controls Rac1 and FAK activation and coordinates the targeted recycling of α5- and β1-integrins to FAs to regulate FA formation and membrane dynamics.
Resumo:
This paper analyses the early modern transformations of South Asian literary cultures through the production of historiography in Persian, English, and Urdu. In the 18th-19th centuries, South Asian communities experienced and participated in a major restructuring of the languages of the subcontinent. Urdu and English were institutionalized as governmental languages and utilized in new literary productions as Persian was gradually marginalized from the centre of literary and governmental polities. Three interrelated colonial policies reshaped the historical consciousness of South Asia and Britain: the production of new Persian histories commissioned under British patronage, the initiation of Urdu historiography through the translation of Persian and English histories, and the construction of the British history of India written in English. This article explores the historical and social dynamics of these events and situates the origins and evolution of the colonial historiographical project. Major works discussed are the Tārīkh-i Bangālah of Salīm Allāh Munshī (fl. 1763), James Mill's (1773-1836) The History of British India first published in 1817, Mīr Sher ʿAlī Afsos' the Ārāʾish-i mahfil, as well as the production of original Urdu histories such as Muḥammad Zakāʾ-Allāh's (1832-1910) the Tārīkh-i Hindustān.
Resumo:
In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
The annual elimination of large numbers of Argentine ant queens near the advance front of an invasion could be a useful tool for weakening the species’ dispersion and, therefore, limiting its establishment in non-invaded areas. However, before carrying out trials to test the effectiveness of this method it would be essential to have sufficient knowledge of the effect of seasonal dynamics acting on the queens’ densities of the species in order to determine the most favourable period of the year to act. We analyzed the seasonal densities and nest dynamics of Argentine ant queens in an invaded Mediterranean natural ecosystem. We observed that the queens’ density varied depending on the season of the year and that this variation was mainly due to the seasonal dynamics of nest aggregations in winter and ant dispersions in summer. The greatest densities per litre of nest soil were observed in winter (December to March, approximately) and the lowest densities were observed in summer ( June to July). This information is essential for improving current knowledge of the Argentine ant’s biology and developing control methods based on the elimination of queens in invaded natural areas