870 resultados para Metal-ceramic joint. Mechanical metallization. Brazing. Zirconia and stainless steel
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Traditionally mostly publicly provided Finnish healthcare services are confronted today by the evident challenge of rising healthcare costs as the expenditure on health and social case has exceeded Finland’s national GDP growth significantly since the new millennium. While the opening of the traditional barriers through the EU’s new patient directive resulting in increasing international competition and the free flow of patients within the EU present opportunities for the Finnish healthcare services industry there are also several challenges for the existing healthcare system as proposed by the Ministry of Employment and the Economy in 2011. Due to the structure and nature of the current Finnish healthcare service system the greatest potential for internationalization is seen from a joint cooperation of the public and private sectors in an internationalization network for Finnish healthcare services. As its formation has recently also taken as a strategic initiative to be completed by the Ministry of Employment and the Economy and no earlier research exists on how this is seen in practice by the network actors, the purpose of this study is to examine the proposed solution of forming an internationalization network between the public and private sector actors in Finland in practice from the viewpoint of public sector actors. The research relied heavily on the reports by the Finnish Ministries in understanding the current situation of the Finnish healthcare services internationalization and its potential. Suitable theories were also used to build a more comprehensive view of the matter. The study applied a qualitative research approach on the explorative research problem. The data collection was achieved through expert interviews in two of the largest Finnish public healthcare service providers; the Turku and Helsinki Central University Hospitals. Expert interviews were considered as the most suitable method for data collection in order to create an in-depth understanding of the topic within the limitations of this thesis. In turn, two different public healthcare service providers were chosen to give a broader view of the field instead of focusing on a specific unit and also to allow a possible comparison between the two different organizations. The latter however was shown not to be suitable for the purposes of this study as the opinions of the respondents varied largely also within their own organizations. The conclusion is that while the actors agree on the evident internationalization of Finnish healthcare services, there are several large-scale structural challenges effectively preventing such activities while at the same time the opportunities within Finland vary, as there are several niches but no real large-scale advantages in the highly competitive industry. Interest towards cooperation between the sectors are seen especially in exploiting the advantages offered by the private sector in commercialization and marketization, yet however no clear views exist on how these activities should be governed or structured in the short-term as a larger reform of the entire Finnish healthcare service sector is needed in the long-term.
Resumo:
Ribonucleic acid (RNA) has many biological roles in cells: it takes part in coding, decoding, regulating and expressing of the genes as well as has the capacity to work as a catalyst in numerous biological reactions. These qualities make RNA an interesting object of various studies. Development of useful tools with which to investigate RNA is a prerequisite for more advanced research in the field. One of such tools may be the artificial ribonucleases, which are oligonucleotide conjugates that sequence-selectively cleave complementary RNA targets. This thesis is aimed at developing new efficient metal-ion-based artificial ribonucleases. On one hand, to solve the challenges related to solid-supported synthesis of metal-ion-binding conjugates of oligonucleotides, and on the other hand, to quantify their ability to cleave various oligoribonucleotide targets in a pre-designed sequence selective manner. In this study several artificial ribonucleases based on cleaving capability of metal ion chelated azacrown moiety were designed and synthesized successfully. The most efficient ribonucleases were the ones with two azacrowns close to the 3´- end of the oligonucleotide strand. Different transition metal ions were introduced into the azacrown moiety and among them, the Zn2+ ion was found to be better than Cu2+ and Ni2+ ions.
Resumo:
Keyhole welding, meaning that the laser beam forms a vapour cavity inside the steel, is one of the two types of laser welding processes and currently it is used in few industrial applications. Modern high power solid state lasers are becoming more used generally, but not all process fundamentals and phenomena of the process are well known and understanding of these helps to improve quality of final products. This study concentrates on the process fundamentals and the behaviour of the keyhole welding process by the means of real time high speed x-ray videography. One of the problem areas in laser welding has been mixing of the filler wire into the weld; the phenomena are explained and also one possible solution for this problem is presented in this study. The argument of this thesis is that the keyhole laser welding process has three keyhole modes that behave differently. These modes are trap, cylinder and kaleidoscope. Two of these have sub-modes, in which the keyhole behaves similarly but the molten pool changes behaviour and geometry of the resulting weld is different. X-ray videography was used to visualize the actual keyhole side view profile during the welding process. Several methods were applied to analyse and compile high speed x-ray video data to achieve a clearer image of the keyhole side view. Averaging was used to measure the keyhole side view outline, which was used to reconstruct a 3D-model of the actual keyhole. This 3D-model was taken as basis for calculation of the vapour volume inside of the keyhole for each laser parameter combination and joint geometry. Four different joint geometries were tested, partial penetration bead on plate and I-butt joint and full penetration bead on plate and I-butt joint. The comparison was performed with selected pairs and also compared all combinations together.
Resumo:
The aim of the present study was to evaluate the effect of joint immobilization on morphometric parameters and glycogen content of soleus muscle treated with clenbuterol. Male Wistar (3-4 months old) rats were divided into 4 groups (N = 6 for each group): control, clenbuterol, immobilized, and immobilized treated with clenbuterol. Immobilization was performed with acrylic resin orthoses and 10 µg/kg body weight clenbuterol was administered subcutaneously for 7 days. The following parameters were measured the next day on soleus muscle: weight, glycogen content, cross-sectional area, and connective tissue content. The clenbuterol group showed an increase in glycogen (81.6%, 0.38 ± 0.09 vs 0.69 ± 0.06 mg/100 g; P < 0.05) without alteration in weight, cross-sectional area or connective tissue compared with the control group. The immobilized group showed a reduction in muscle weight (34.2%, 123.5 ± 5.3 vs 81.3 ± 4.6 mg; P < 0.05), glycogen content (31.6%, 0.38 ± 0.09 vs 0.26 ± 0.05 mg/100 mg; P < 0.05) and cross-sectional area (44.1%, 2574.9 ± 560.2 vs 1438.1 ± 352.2 µm²; P < 0.05) and an increase in connective tissue (216.5%, 8.82 ± 3.55 vs 27.92 ± 5.36%; P < 0.05). However, the immobilized + clenbuterol group showed an increase in weight (15.9%; 81.3 ± 4.6 vs 94.2 ± 4.3 mg; P < 0.05), glycogen content (92.3%, 0.26 ± 0.05 vs 0.50 ± 0.17 mg/100 mg; P < 0.05), and cross-sectional area (19.9%, 1438.1 ± 352.2 vs 1724.8 ± 365.5 µm²; P < 0.05) and a reduction in connective tissue (52.2%, 27.92 ± 5.36 vs 13.34 ± 6.86%; P < 0.05). Statistical analysis was performed using Kolmogorov-Smirnov and homoscedasticity tests. For the muscle weight and muscle glycogen content, two-way ANOVA and the Tukey test were used. For the cross-sectional area and connective tissue content, Kruskal-Wallis and Tukey tests were used. This study emphasizes the importance of anabolic pharmacological protection during immobilization to minimize skeletal muscle alterations resulting from disuse.
Resumo:
Since streptozotocin (STZ)-induced diabetes is a widely used model of painful diabetic neuropathy, the aim of the present study was to design a rational protocol to investigate whether the development of mechanical hypernociception induced by STZ depends exclusively on hyperglycemia. Male Wistar rats (180-200 g; N = 6-7 per group) received a single intravenous injection of STZ at three different doses (10, 20, or 40 mg/kg). Only the higher dose (40 mg/kg) induced a significant increase in blood glucose levels, glucose tolerance and deficiency in weight gain. However, all STZ-treated rats (hyperglycemic or not) developed persistent (for at least 20 days) and indistinguishable bilateral mechanical hypernociception that was not prevented by daily insulin treatment (2 IU twice a day, sc). Systemic morphine (2 mg/kg) but not local (intraplantar) morphine treatment (8 µg/paw) significantly inhibited the mechanical hypernociception induced by STZ (10 or 40 mg/kg). In addition, intraplantar injection of STZ at doses that did not cause hyperglycemia (30, 100 or 300 µg/paw) induced ipsilateral mechanical hypernociception for at least 8 h that was inhibited by local and systemic morphine treatment (8 µg/paw or 2 mg/kg, respectively), but not by dexamethasone (1 mg/kg, sc). The results of this study demonstrate that systemic administration of STZ induces mechanical hypernociception that does not depend on hyperglycemia and intraplantar STZ induces mechanical sensitization of primary sensory neurons responsive to local morphine treatment.
Resumo:
This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.
Resumo:
Laser beam welding (LBW) is applicable for a wide range of industrial sectors and has a history of fifty years. However, it is considered an unusual method with applications typically limited to welding of thin sheet metal. With a new generation of high power lasers there has been a renewed interest in thick section LBW (also known as keyhole laser welding). There was a growing body of publications during 2001-2011 that indicates an increasing interest in laser welding for many industrial applications, and in last ten years, an increasing number of studies have examined the ways to increase the efficiency of the process. Expanding the thickness range and efficiency of LBW makes the process a possibility for industrial applications dealing with thick metal welding: shipbuilding, offshore structures, pipelines, power plants and other industries. The advantages provided by LBW, such as high process speed, high productivity, and low heat input, may revolutionize these industries and significantly reduce the process costs. The research to date has focused on either increasing the efficiency via optimizing process parameters, or on the process fundamentals, rather than on process and workpiece modifications. The argument of this thesis is that the efficiency of the laser beam process can be increased in a straightforward way in the workshop conditions. Throughout this dissertation, the term “efficiency” is used to refer to welding process efficiency, specifically, an increase in efficiency refers an increase in weld’s penetration depth without increasing laser power level or decreasing welding speed. These methods are: modifications of the workpiece – edge surface roughness and air gap between the joining plates; modification of the ambient conditions – local reduction of the pressure in the welding zone; modification of the welding process – preheating of the welding zone. Approaches to improve the efficiency are analyzed and compared both separately and combined. These experimentally proven methods confirm previous findings and contribute additional evidence which expand the opportunities for laser beam welding applications. The focus of this research was primarily on the effects of edge surface roughness preparation and pre-set air gap between the plates on weld quality and penetration depth. To date, there has been no reliable evidence that such modifications of the workpiece give a positive effect on the welding efficiency. Other methods were tested in combination with the two methods mentioned above. The most promising - combining with reduced pressure method - resulted in at least 100% increase in efficiency. The results of this thesis support the idea that joining those methods in one modified process will provide the modern engineering with a sufficient tool for many novel applications with potential benefits to a range of industries.
Resumo:
This study discusses the formation phase of Chinese-Finnish joint ventures in China. The purpose of this thesis is to create best practices for Finnish software companies in forming a joint venture with a local Chinese company in China. Therefore, the main research question, in what are the best practices for forming Sino-Finnish joint ventures in China for Finnish software firms, is examined through four different themes within the joint venture formation phase; the motives, the partner se- lection, the choice of a joint venture type and joint venture negotiations. The theoretical background of the study consists of literature relating to the establishment process of Sino-Western joint ventures in China. The empirical research conducted for this study is based on the expert interviews. The empirical data was gathered via nine semi-structured interviews with both Chinese and Finnish experts in software and technology industry, who have experience or knowledge in establishing Sino-Finnish joint ventures in China. Thematic analysis was used to cat- egorize and interpret the interview data. In addition, a thematic network was built to act as a basis of the analysis. According to the main findings, the main motives for Finnish software companies to establish a joint venture in China are lack of skills or experience, little resources to enter on their own, and China’s large market. The main motives for Chinese companies are to gain new technology or man- agerial skills, and expand internationally. The intellectual property rights (IPR) have recently im- proved a lot in China, but the Finnish companies’ knowledge on IPR is inadequate. The Finnish software companies should conduct a market and industry research in order to understand their po- sition in the market and to find a suitable location and potential joint venture partners. It is essential to define partner selection criteria and partner attributes. In addition, it is important to build the joint venture around complementary motives and a win-win situation between the joint venture partners. The Finnish companies should be prepared that the joint venture negotiations will be challenging and they will take a long time. The challenges can be overcome by gaining understanding about the Chinese culture and business environment. The findings of this study enhance understanding of the joint venture formation phase in China. This study provides guidelines for Finnish software companies to establish a joint venture in China. In addition, this study brings new insights to the Sino-Western joint venture literature with its soft- ware industry context. Future research is, however, necessary in order to gain an understanding of the advantages and disadvantages of a joint venture as an entry mode into China for Finnish soft- ware companies
Resumo:
The development of cost efficient, selective and sustainable chemical processes for production of chiral building blocks is of great importance in synthetic and industrial organic chemistry. One way to reach these objectives is to carry out several reactions steps in one vessel at one time. Furthermore, when this kind of one-pot multi step reactions are catalyzed by heterogeneous chemo- and bio-catalysts, which can be separated from the reaction products by filtration, practical access to chiral small molecules for further utilization can be obtained. The initial reactions studied in this thesis are the two step dynamic kinetic resolution of rac-2-hydroxy-1-indanone and the regioselective hydrogenation of 1,2-indanedione. These reactions are then combined in a new heterogeneously catalyzed one-pot reaction sequence enabling simple recovery of the catalysts by filtration, facilitating simple reaction product isolation. Conclusively, the readily available 1,2-indanedione is by the presented one-pot sequence, utilizing heterogeneous enzyme and transition metal based catalysts, transferred with high regio- and stereoselectivity to a useful chiral vicinal hydroxyl ketone structure. Additional and complementary investigation of homogeneous half-sandwich ruthenium complexes for catalyzing the epimerization of chiral secondary alcohols of five natural products containing additional non-functionalized stereocenters was conducted. In principle, this kind of epimerization reactions of single stereocenters could be utilized for converting inexpensive starting materials, containing other stereogenic centers, into diastereomeric mixtures from which more valuable compounds can be isolated by traditional isolation techniques.
Resumo:
The development of processed foods requires the understanding of the phenomena that dictate the ingredient interactions normally used in food formulations, as well as the effects of the numerous operations involved in the processing of the final product. In ice creams, sugars are responsible for taste, but they also affect the freezing behavior and viscosity of processed mixes. Components such as fats influence mechanical properties, melting resistance, and palatability of final products. The objective was to study the technological effects of different sugars and fats on the structure of ice cream formulations. Fructose syrup was used as a substitute for glucose syrup in blends with sucrose, and palm fat was employed as an alternative to hydrogenated vegetable fat. The analysis of variance showed significant differences in chemical compositions. Hygroscopicity of fructose syrup increased the solids content in the formulations. Melting rate and overrun were higher in products added with this sugar. Palm fat caused changes in melting ranges of formulations, and higher melting rate was observed in the combination of palm fat and fructose syrup.
Resumo:
The aim of this study was to evaluate the physical and chemical parameters of Williams pear, stored at 25 ºC for 15 days, with and without edible coating. Edible coatings prepared with alginate 2% and carrageenan 0.5% were tested. The analyses carried out on the samples were: weight loss, pH, soluble solids, firmness, and color. The edible coatings were characterized in terms of mechanical properties, permeability, thickness, and opacity. The results show that the application of edible coatings with carrageenan and alginate in pears influenced physical and chemical characteristics such as weight loss, pH, total soluble solids, color, and firmness of the fruit. However, the alginate coating showed the best results on pear conservation since it had lower water vapor permeability and greater tensile strength, and therefore it can be used as a protective film on these fruits.
Resumo:
Metal-ion-mediated base-pairing of nucleic acids has attracted considerable attention during the past decade, since it offers means to expand the genetic code by artificial base-pairs, to create predesigned molecular architecture by metal-ion-mediated inter- or intra-strand cross-links, or to convert double stranded DNA to a nano-scale wire. Such applications largely depend on the presence of a modified nucleobase in both strands engaged in the duplex formation. Hybridization of metal-ion-binding oligonucleotide analogs with natural nucleic acid sequences has received much less attention in spite of obvious applications. While the natural oligonucleotides hybridize with high selectivity, their affinity for complementary sequences is inadequate for a number of applications. In the case of DNA, for example, more than 10 consecutive Watson-Crick base pairs are required for a stable duplex at room temperature, making targeting of sequences shorter than this challenging. For example, many types of cancer exhibit distinctive profiles of oncogenic miRNA, the diagnostics of which is, however, difficult owing to the presence of only short single stranded loop structures. Metallo-oligonucleotides, with their superior affinity towards their natural complements, would offer a way to overcome the low stability of short duplexes. In this study a number of metal-ion-binding surrogate nucleosides were prepared and their interaction with nucleoside 5´-monophosphates (NMPs) has been investigated by 1H NMR spectroscopy. To find metal ion complexes that could discriminate between natural nucleobases upon double helix formation, glycol nucleic acid (GNA) sequences carrying a PdII ion with vacant coordination sites at a predetermined position were synthesized and their affinity to complementary as well as mismatched counterparts quantified by UV-melting measurements.
Resumo:
Modern automobiles are no longer just mechanical tools. The electronics and computing services they are shipping with are making them not less than a computer. They are massive kinetic devices with sophisticated computing power. Most of the modern vehicles are made with the added connectivity in mind which may be vulnerable to outside attack. Researchers have shown that it is possible to infiltrate into a vehicle’s internal system remotely and control the physical entities such as steering and brakes. It is quite possible to experience such attacks on a moving vehicle and unable to use the controls. These massive connected computers can be life threatening as they are related to everyday lifestyle. First part of this research studied the attack surfaces in the automotive cybersecurity domain. It also illustrated the attack methods and capabilities of the damages. Online survey has been deployed as data collection tool to learn about the consumers’ usage of such vulnerable automotive services. The second part of the research portrayed the consumers’ privacy in automotive world. It has been found that almost hundred percent of modern vehicles has the capabilities to send vehicle diagnostic data as well as user generated data to their manufacturers, and almost thirty five percent automotive companies are collecting them already. Internet privacy has been studies before in many related domain but no privacy scale were matched for automotive consumers. It created the research gap and motivation for this thesis. A study has been performed to use well established consumers privacy scale – IUIPC to match with the automotive consumers’ privacy situation. Hypotheses were developed based on the IUIPC model for internet consumers’ privacy and they were studied by the finding from the data collection methods. Based on the key findings of the research, all the hypotheses were accepted and hence it is found that automotive consumers’ privacy did follow the IUIPC model under certain conditions. It is also found that a majority of automotive consumers use the services and devices that are vulnerable and prone to cyber-attacks. It is also established that there is a market for automotive cybersecurity services and consumers are willing to pay certain fees to avail that.
Resumo:
This study discusses the formation phase of Chinese-Finnish joint ventures in China. The purpose of this thesis is to create best practices for Finnish software companies in forming a joint venture with a local Chinese company in China. Therefore, the main research question, in what are the best practices for forming Sino-Finnish joint ventures in China for Finnish software firms, is examined through four different themes within the joint venture formation phase; the motives, the partner se-lection, the choice of a joint venture type and joint venture negotiations. The theoretical background of the study consists of literature relating to the establishment process of Sino-Western joint ventures in China. The empirical research conducted for this study is based on the expert interviews. The empirical data was gathered via nine semi-structured interviews with both Chinese and Finnish experts in software and technology industry, who have experience or knowledge in establishing Sino-Finnish joint ventures in China. Thematic analysis was used to cat-egorize and interpret the interview data. In addition, a thematic network was built to act as a basis of the analysis. According to the main findings, the main motives for Finnish software companies to establish a joint venture in China are lack of skills or experience, little resources to enter on their own, and China’s large market. The main motives for Chinese companies are to gain new technology or man-agerial skills, and expand internationally. The intellectual property rights (IPR) have recently im-proved a lot in China, but the Finnish companies’ knowledge on IPR is inadequate. The Finnish software companies should conduct a market and industry research in order to understand their po-sition in the market and to find a suitable location and potential joint venture partners. It is essential to define partner selection criteria and partner attributes. In addition, it is important to build the joint venture around complementary motives and a win-win situation between the joint venture partners. The Finnish companies should be prepared that the joint venture negotiations will be challenging and they will take a long time. The challenges can be overcome by gaining understanding about the Chinese culture and business environment. The findings of this study enhance understanding of the joint venture formation phase in China. This study provides guidelines for Finnish software companies to establish a joint venture in China. In addition, this study brings new insights to the Sino-Western joint venture literature with its soft-ware industry context. Future research is, however, necessary in order to gain an understanding of the advantages and disadvantages of a joint venture as an entry mode into China for Finnish soft-ware companies.