798 resultados para Metal selectivity
Resumo:
This review deals with surface-enhancved Raman scattering (SERS) employing Langmuir-Blodgett (LB) films, which serve as model systems for developing theoretical and experimental studies to elucidate the SERS effect. In addition, LB films have be used as integral parts of molecular architectures for SERS-active substrates. On the other hand, SERS and surface-enhaced resonant Raman scattering (SERRS) have allowed various properties of LB films to be investigated, especially those associated with molecular-level interactions. In the paper, emphasis is placed on single molecule detection (SMD), where the target molecule is diluted on an LB matrix of spectral silent material (low Raman cross section). The perspectives and challenges for combining SERS and LB films are also discussed.
Resumo:
Most physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TR alpha and TR beta. Several pharmacological effects mediated by TR beta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TR beta activation may elicit these effects while maintaining an acceptable safety profile, To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics. Statistically reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models were obtained using the comparative molecular field analysis (CoMFA) method, and the visual analyses of the contour maps drew attention to a number of possible opportunities for the development of analogs with improved affinity and selectivity. Furthermore, the 3D-QSSR analysis allowed the identification of a novel and previously unmentioned halogen bond, bringing new insights to the mechanism of activity and selectivity of thyromimetics.
Resumo:
In this paper, we present a study about the influence of the porphyrin metal center and mesa ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca(2+). Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Resumo:
Materials used in current technological approaches for the removal of mercury lack selectivity. Given that this is one of the main features of supramolecular chemistry, receptors based on calix[4]arene and calix[4]resorcarene containing functional groups able to interact selectively with polluting ions while discriminating against biologically essential ones were designed. Thus two receptors, a partially functionalized calix[4]arene derivative, namely, 5,11,17,23-tetra-tert-butyl [25-27-bis(diethyl thiophosphate amino)dihydroxy] calix[4]arene (1) and a fully functionalized calix[4]resorcarene, 4,6,10,12,16,18,22,24-diethyl thiophosphate calix[4]resorcarene (2) are introduced. Mercury(II) was the identified target due to the environmental and health problems associated with its presence in water Thus following the synthesis and characterization of 1 and 2 in solution ((1)HNMR) and in the solid state (X-ray crystallography) the sequence of experimental events leading to cation complexation studies in acetonitrile and methanol ((1)H NMR, conductance, potentiometric, and calorimetric measurements) with the aim of assessing their behavior as mercury selective receptors are described. The cation selectivity pattern observed in acetonitrile follows the sequence Hg(II) > Cu(II) > Ag(I). In methanol 1 is also selective for Hg(II) relative to Ag(I) but no interaction takes place between this receptor and Cu(II) in this solvent. Based on previous results and experimental facts shown in this paper, it is concluded that the complexation observed with Cu(II) in acetonitrile occurs through the acetonitrile-receptor adduct rather than through the free ligand. Receptor 2 has an enhanced capacity for uptaking Hg(II) but forms metalate complexes with Cu(II). These studies in solution guided the inmobilization of receptor 1 into a silica support to produce a new and recyclable material for the removal of Hg(II) from water. An assessment on its capacity to extract this cation from water relative to Cu(II) and Ag (I) shows that the cation selectivity pattern of the inmobilized receptor is the same as that observed for the free receptor in methanol. These findings demonstrate that fundamental studies play a critical role in the selection of the receptor to be attached to silicates as well as in the reaction medium used for the synthesis of the new decontaminating agent.
Structure-Based Approach for the Study of Estrogen Receptor Binding Affinity and Subtype Selectivity
Resumo:
Estrogens exert important physiological effects through the modulation of two human estrogen receptor (hER) subtypes, alpa (hER alpha) and beta (hER beta). Because the levels and relative proportion of hER alpha and hER beta differ significantly in different target cells, selective hER ligands could target specific tissues or pathways regulated by one receptor subtype without affecting the other. To understand the structural and chemical basis by which small molecule modulators are able to discriminate between the two subtypes, we have applied three-dimensional target-based approaches employing a series of potent hER-ligands. Comparative molecular field analysis (CoMFA) studies were applied to a data set of 81 hER modulators, for which binding affinity values were collected for both hER alpha and hER beta. Significant statistical coefficients were obtained (hER alpha, q(2) = 0.76; hER beta, q(2) = 0.70), indicating the internal consistency of the models. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. Five hER crystal structures were used in GRID/PCA investigations to generate molecular interaction fields (MIF) maps. hER alpha and hER beta were separated using one factor. The resulting 3D information was integrated with the aim of revealing the most relevant structural features involved in hER subtype selectivity. The final QSAR and GRID/PCA models and the information gathered from 3D contour maps should be useful for the design or novel hER modulators with improved selectivity.
Resumo:
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Resumo:
There has been little research on metal concentration levels in urban soils of SA o pound Paulo, a city with 19 million inhabitants with severe pollution problems. In the present study, the concentration of As, Ba, Cr, Cu, Pb, Sb and Zn, were determined by INAA and XRF in surface soil samples from 7 public parks located within SA o pound Paulo city. The results obtained showed that soils of SA o pound Paulo public parks present concentration levels of the studied elements higher than the reference values for soils in SA o pound Paulo State. Traffic related elements such as Cu, Pb and Zn presented high concentrations in parks located near avenues of highly dense traffic and may be associated to vehicular sources.
Preparation of C-terminal modified peptides through alcoholysis and thiolysis mediated by metal ions
Resumo:
The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A correlation between the physicochemical properties of mono- [Li(I), K(I), Na(I)] and divalent [Cd(II), Cu(II), Mn(II), Ni(II), Co(II), Zn(II), Mg(II), Ca(II)] metal cations and their toxicity (evaluated by the free ion median effective concentration. EC50(F)) to the naturally bioluminescent fungus Gerronema viridilucens has been studied using the quantitative ion character activity relationship (QICAR) approach. Among the 11 ionic parameters used in the current study, a univariate model based on the covalent index (X(m)(2)r) proved to be the most adequate for prediction of fungal metal toxicity evaluated by the logarithm of free ion median effective concentration (log EC50(F)): log EC50(F) = 4.243 (+/-0.243) -1.268 (+/-0.125).X(m)(2)r (adj-R(2) = 0.9113, Alkaike information criterion [AIC] = 60.42). Additional two- and three-variable models were also tested and proved less suitable to fit the experimental data. These results indicate that covalent bonding is a good indicator of metal inherent toxicity to bioluminescent fungi. Furthermore, the toxicity of additional metal ions [Ag(I), Cs(I), Sr(II), Ba(II), Fe(II), Hg(II), and Pb(II)] to G. viridilucens was predicted, and Pb was found to be the most toxic metal to this bioluminescent fungus (EC50(F)): Pb(II) > Ag(I) > Hg(I) > Cd(II) > Cu(II) > Co(II) Ni(II) > Mn(II) > Fe(II) approximate to Zn(II) > Mg(II) approximate to Ba(II) approximate to Cs(I) > Li(I) > K(I) approximate to Na(I) approximate to Sr(II)> Ca(II). Environ. Toxicol. Chem. 2010;29:2177-2181. (C) 2010 SETAC
Resumo:
Metal cation toxicity to basidiomycete fungi is poorly understood, despite its well-known importance in terrestrial ecosystems. Moreover, there is no reported methodology for the routine evaluation of metal toxicity to basidiomycetes. In the present study, we describe the development of a procedure to assess the acute toxicity of metal cations (Na(+), K(+), Li(+), Ca(2+), Mg(2+), Co(2+), Zn(2+), Ni(2+), Mn(2+), Cd(2+), and Cu(2+)) to the bioluminescent basidiomycete fungus Gerronema viridilucens. The method is based on the decrease in the intensity of bioluminescence resulting from injuries sustained by the fungus mycelium exposed to either essential or nonessential metal toxicants. The assay described herein enables LIS to propose a metal toxicity series to Gerronenia viridilucens based on data obtained from the bioluminescence intensity (median effective concentration [EC50] values) versus metal concentration: Cd(2+) > Cu(2+) > Mn(2+) approximate to Ni(2+) approximate to Co(2+) > Zn(2+) > Mg(2+) > Li(+) > K(+) approximate to Na(+) > Ca(2+), and to shed some li-ht on the mechanism of toxic action of metal cations to basidiomycete fungi. Environ. Toxicol. Chem. 2010;29:320-326. (C) 2009 SETAC
Resumo:
Lignocellulosic residues are interesting materials for the production of heavy metal adsorbents for aquatic systems. Whole fibers taken from coconut (Cocos nucifera) husks were functionalized with the thiophosphoryl (P=S) group by means of the direct reaction with CI(3)P=S, (CH(3)O)(2)CIP=S or (CH(3)CH(2)O)(2)CIP=S in order to obtain an adsorptive system for `soft` metal ions, particularly Cd(2+). These functionalized fibers (FFs) were characterized by means of elemental analysis, infrared spectroscopy, thermal analysis and acid-base titration. Adsorption isotherms for Cd(2+) fitted the Langmuir model, with binding capacities of 0.2-5 mmol g(-1) of FF at 25 degrees C. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Co/Al(2)O(3) Fischer-Tropsch synthesis catalysts promoted with different quantities of Group 11 metals (Cu, Ag, Au) were characterized and tested. The presence of relatively small quantities of such metals enhanced Co reducibility and, in the cases of Ag and Au, improved the surface Co metal active site densities. EXAFS experiments with the most loaded catalyst samples show that only Co-Co and Me-Me (Me = Cu, Ag and Au) coordination could be observed. This suggests that the greater fraction of the metals form different phases. However, the reduction promoting effect of the Group 11 metal is severely hampered once the catalyst receives a mild passivation treatment following primary reduction. An explanation in terms of promoter segregation during primary reduction is proposed. At lower promoter levels (0.83%Ag and 1.51%Au) and higher Ag levels (2.76%), significant gains in Co active site densities were achieved resulting in improved CO conversion levels relative to the unpromoted catalyst. Moreover, slight decreases in light product (e.g., CH(4)) selectivity and slight increases in C(5)+ selectivity were achieved. At high Au loading (5.05%), however, too much Au was loaded which, although significantly increasing the fraction of Co reduced, blocked Co surface sites and resulted in decreased Co conversion rates. While Cu facilitated Co reduction, the increased fraction of reduced Co did not translate to improved active site densities. It appears that a fraction of Cu tended to cover the rim of Co clusters, resulting in decreases in CO conversion rates and detrimental increases in light product selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Can mass dissociation patterns of transition-metal complexes be predicted from electrochemical data?
Resumo:
The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (mu(3)-O)(mu-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever`s E(L) parameters. In fact, excellent linear correlations of In(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes. Copyright (C) 2008 John Wiley & Sons, Ltd.