998 resultados para Metal carboxylates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered. Two different fracture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films. A set of experiments have been done on the mechanism of copper films delaminating from silica substrates, based on which the peak interface separation stress and the micro-length scale of material, as well as the dislocation-free zone size are predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of local orientations around whiskers in deformed metal matrix composites has been used to determine the strain gradients existing in the material following tensile deformation. These strain fields have been represented as arrays of geometrically necessary dislocations, and the material flow stress predicted using a standard dislocation hardening model. Whilst the correlation between this and the measured flow stress is reasonable, the experimentally determined strain gradients are lower by a factor of 5-10 than values obtained in previous estimates made using continuum plasticity finite element models. The local orientations around the whiskers contain a large amount of detailed information about the strain patterns in the material, and a novel approach is made to representing some of this information and to correlating it with microstructural observations. © 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimised ultrafast laser ablation can result in almost complete ionisation of the target material and the formation of a high velocity plasma jet. Collisions with the ambient gas behind the shock front cools the material resulting in the formation of mainly spherical, single crystal nanoscale particles in the condensate. This work characterises the nanoscale structures produced by the ultrafast laser interactions in He atmospheres at STP with Ni and Al. High resolution transmission electron microscopy was employed to study the microstructure of the condensates and to classify the production of particles forms as a function of the illumination conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in-plane motion of microelectrothermal actuator ("heatuator") has been analyzed for Si-based and metallic devices. It was found that the lateral deflection of a heatuator made of a Ni metal is about ∼60% larger than that of a Si-based actuator under the same power consumption. Metals are much better for thermal actuators as they provide a relatively large deflection and large force, for a low operating temperature and power consumption. Electroplated Ni films were used to fabricate heatuators. The electrical and mechanical properties of electroplated Ni thin films have been investigated as a function of temperature and plating current density, and the process conditions have been optimized to obtain stress-free films suitable for microelectromechanical systems applications. Lateral thermal actuators have been successfully fabricated, and electrically tested. Microswitches and microtweezers utilizing the heatuator have also been fabricated and tested. © 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat dissipation capability of highly porous cellular metal foams with open cells subject to forced air convection is studied using a combined experimental and analytical approach. The cellular morphologies of six FeCrAlY (an iron-based alloy) foams and six copper alloy foams with a range of pore sizes and porosities are quantified with the scanning electronic microscope and image analysis. Experimental measurements on pressure drop and heat transfer for copper foams are carried out. A numerical model for forced convection across open-celled metal foams is subsequently developed, and the predictions are compared with those measured. Reasonably good agreement with test data is obtained, given the complexity of the cellular foam morphology and the associated momentum/energy transport. The results show that cell size has a more significant effect on the overall heat transfer than porosity. An optimal porosity is obtained based on the balance between pressure drop and overall heat transfer, which decreases as the Reynolds number is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly porous ultralightweight cellular metal foams with open cells have attractive mechanical, thermal, acoustic and other properties and are currently being exploited for high-temperature applications (e.g. acoustic liners for combustion chambers). In such circumstances, thermal radiation in the metal foam becomes a significant mechanism of heat transfer. This paper presents results from experimental measurements on radiative transfer in Fe-Cr-Al-Y (a steel-based high-temperature alloy) foams having high porosity (95 per cent) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short-wavelength regime (less than 25 μm). While the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. The effective radiative conductivity of the metal foam is obtained by using the guarded hot-plate apparatus. With the porosity fixed, the effective radiative conductivity increases with increasing cell size and increasing temperature. © IMechE 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a combined experimental and numerical study on natural convection in open-celled metal foams. The effective thermal conductivities of steel alloy (FeCrAlY) samples with different relative densities and cell sizes are measured with the guarded-hot-plate method. To examine the natural convection effect, the measurements are conducted under both vacuum and ambient conditions for a range of temperatures. The experimental results show that natural convection is very significant, accounting for up to 50% of the effective foam conductivity obtained at ambient pressure. This has been attributed to the high porosity (ε > 0.9) and inter-connected open cells of the metal foams studied. Morphological parameters characterizing open-celled FeCrAlY foams are subsequently identified and their cross-relationships are built. The non-equilibrium two-equation energy transfer model is employed, and selected calculations show that the non-equilibrium effect between the solid foam skeleton and air is significant. The study indicates that the combined parameter, i.e., the porous medium Rayleigh number, is no longer appropriate to correlate natural convection by itself when the Darcy number is sufficiently large as in the case of natural convection in open-celled metal foams. Good agreement between model predictions and experimental measurements is obtained. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results from experimental measurements on radiative transfer in FeCrAlY (a steel based high temperature alloy) foams having high porosity (95%) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short wavelength regime (<25 μm). Whilst the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. An analytical model based on geometric optics laws, diffraction theory and metal foam morphology is developed to predict the radiative transfer, with cell size (or cell ligament diameter) and porosity identified as the two key parameters that dictate the foam radiative properties. Close agreement between the predicted effective foam conductivity due to radiation alone and that measured is observed. At fixed porosity, the radiative conductivity of the metal foam increases with increasing cell size and temperature. © 2004 Elsevier Ltd.All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel normally closed microcage has been fabricated and characterized. This device was made from a highly compressively stressed diamond like carbon (DLC) and electroplated Ni bimorph structure. The large stress in the DLC causes the bimorph layer to curve once it is released from the substrate. The radius of curvature is in the range of 18 - 50μm, and can be controlled by varying the DLC and the Ni thicknesses. The devices can be operated in a pulsed mode current with low operation temperature, and can be opened by ∼60μm laterally with a power consumption of only ∼16mW. © 2004 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-finger, normally-closed microgrippers made from a bilayer of a metal and diamond-like carbon (DLC) or a trilayer of a polymer, metal and DLC have been analysed, simulated and fabricated. Temperatures of ∼700 K are necessary to open Ni/DLC bimorph structures. Microgrippers made from an SU8/DLC bilayer or SU8/Al/DLC trilayer have also been fabricated, and fully closed microcages with diameters of ∑40 μm have been obtained. Using SU8 reduces the opening temperature of these devices to only ∼400 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, effect of strain gradient on adiabatic shear instability in particle reinforced metal matrix composites is investigated by making use of the strain gradient dependent constitutive equation developed by Dai et al. [9] and the linear perturbation analysis presented by Bai [10]. The results have shown that the onset of adiabatic shear instability in metal matrix composites reinforced with small particles is more prone to occur than in the composites reinforced with large particles. This means that the strain gradient provides a strong deriving force for onset of adiabatic shear instability in metal matrix composites.