996 resultados para Maundrell, Mike
Resumo:
Simon R Thomas, Mathew J Owens and Mike Lockwood discuss how neutron monitor counts can help map space weather. This won the 2014 Rishbeth Prize for the best student talk at the Hot Spring MIST Meeting in Bath, April 2014.
Resumo:
The magnetometer is a key instrument to the Solar Orbiter mission. The magnetic field is a fundamental parameter in any plasma: a precise and accurate measurement of the field is essential for understanding almost all aspects of plasma dynamics such as shocks and stream-stream interactions. Many of Solar Orbiter’s mission goals are focussed around the link between the Sun and space. A combination of in situ measurements by the magnetometer, remote measurements of solar magnetic fields and global modelling is required to determine this link and hence how the Sun affects interplanetary space. The magnetic field is typically one of the most precisely measured plasma parameters and is therefore the most commonly used measurement for studies of waves, turbulence and other small scale phenomena. It is also related to the coronal magnetic field which cannot be measured directly. Accurate knowledge of the magnetic field is essential for the calculation of fundamental plasma parameters such as the plasma beta, Alfvén speed and gyroperiod. We describe here the objectives and context of magnetic field measurements on Solar Orbiter and an instrument that fulfils those objectives as defined by the scientific requirements for the mission.
Resumo:
Space is a dangerous place for humans, once we step beyond the rotection of Earth’s atmosphere and magnetic field. Galactic cosmic rays and bursts of charged particles from the Sun damaging to health happen with alarming frequency – the Apollo astronauts were very lucky. Understanding the physics of radiation from distinct sources in space will be useful to help future space voyagers plan journeys in greater safety, and produce effective shields for these unavoidable events on journeys to Mars or beyond.
Resumo:
The response of galactic cosmic rays (GCRs) to an isolated enhancement of the non-axisymmetric component of the solar open magnetic field between June and November 1996 is investigated by using a combination of solar observations and numerical modelling of the interplanetary medium. The most obvious coronal hole visible from Earth at the time had little shielding effect on the flux of GCRs, as measured at Earth by neutron monitors. It is found that the evolution of the corotating interaction regions generated by a less obvious coronal hole was the principal controlling factor. Moreover, we demonstrate the imprint of the latitudinal and longitudinal evolution of that coronal hole on the variation of GCRs. The latitudinal extent of this solar minimum corotating interaction region had a determining, but local, shielding effect on GCRs, confirming previous modelling results.
Resumo:
There is a growing consensus that the eleven year modulation of galactic cosmic rays (GCRs) resulting from solar activity is related to interplanetary propagating diffusive barriers (PDBs). The source of these PDBs is not well understood and numerical models describing GCR modulation simulate their effect by scaling the diffusion tensor to the interplanetary magnetic field strength (IMF). The implications of a century-scale change in solar wind speed and open solar flux, for numerical modelling of GCR modulation and the reconstruction of GCR variations over the last hundred years are discussed. The dominant role of the solar non-axisymmetric magnetic field in both forcing longitudinal solar wind speed fluctuations at solar maximum and in increasing the IMF is discussed in the context of a long-term rise in the open solar magnetic flux.
Resumo:
We use combinations of geomagnetic indices, based on both variation range and hourly means, to derive the solar wind flow speed, the interplanetary magnetic field strength at 1 AU and the total open solar flux between 1895 and the present. We analyze the effects of the regression procedure and geomagnetic indices used by adopting four analysis methods. These give a mean interplanetary magnetic field strength increase of 45.1 ± 4.5% between 1903 and 1956, associated with a 14.4 ± 0.7% rise in the solar wind speed. We use averaging timescales of 1 and 2 days to allow for the difference between the magnetic fluxes threading the coronal source surface and the heliocentric sphere at 1 AU. The largest uncertainties originate from the choice of regression procedure: the average of all eight estimates of the rise in open solar flux is 73.0 ± 5.0%, but the best procedure, giving the narrowest and most symmetric distribution of fit residuals, yields 87.3 ± 3.9%.
Resumo:
There are no direct observational methods for determining the total rate at which energy is extracted from the solar wind by the magnetosphere. In the absence of such a direct measurement, alternative means of estimating the energy available to drive the magnetospheric system have been developed using different ionospheric and magnetospheric indices as proxies for energy consumption and dissipation and thus the input. The so-called coupling functions are constructed from the parameters of the interplanetary medium, as either theoretical or empirical estimates of energy transfer, and the effectiveness of these coupling functions has been evaluated in terms of their correlation with the chosen index. A number of coupling functions have been studied in the past with various criteria governing event selection and timescale. The present paper contains an exhaustive survey of the correlation between geomagnetic activity and the near-Earth solar wind and two of the planetary indices at a wide variety of timescales. Various combinations of interplanetary parameters are evaluated with careful allowance for the effects of data gaps in the interplanetary data. We show that the theoretical coupling, P�, function first proposed by Vasyliunas et al. is superior at all timescales from 1-day to 1-year.
Resumo:
The launch of the Double Star mission has provided the opportunity to monitor events at distinct locations on the dayside magnetopause, in coordination with the quartet of Cluster spacecraft. We present results of two such coordinated studies. In the first, 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawn-side magnetosphere. Cluster observed northward moving FTEs with +/- polarity, whereas TC-1 saw -/+ polarity FTEs. The strength, motion and occurrence of the FTE signatures changes somewhat according to changes in IMF clock angle. These observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1. The observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, lying north and south of the reconnection line, respectively. This scenario is supported by the application of a model, designed to track flux tube motion, to conditions appropriate for the prevailing interplanetary conditions. The results from the model confirm the observational evidence that the low-latitude FTE dynamics is sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model predicts that TC-1 should miss the resulting FTEs more often than Cluster, as is observed. For the second conjunction, on the 4 Jan 2005, the Cluster and TC-1 spacecraft all exited the dusk-side magnetosphere almost simultaneously, with TC-1 lying almost equatorial and Cluster at northern latitudes at about 4 RE from TC-1. The spacecraft traverse the magnetopause during a strong reversal in the IMF from northward to southward and a number of magnetosheath FTE signatures are subsequently observed. One coordinated FTE, studied in detail by Pu et al, [this issue], carries and inflowing energetic electron population and shows a motion and orientation which is similar at all spacecraft and consistent with the predictions of the model for the flux tube dynamics, given a near sub-solar reconnection line. This event can be interpreted either as the passage of two parallel flux tubes arising from adjacent x-line positions, or as a crossing of a single flux tube at different positions.
Resumo:
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth’s atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.
Resumo:
The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.
Resumo:
Particles with energies of tens to hundreds of keV provide a powerful diagnostic of the acceleration processes that characterise the Earth’s magnetosphere, in particular the highly dynamic nightside plasma sheet. Such energetic particles can be detected by the RAPID experiment, onboard the quartet of Cluster spacecraft. We present results from the study of a series of quasi-periodic, intense energetic electron signatures in the magnetotail revealed by RAPID Imaging Electron Spectrometer (IES) observations some 19 Earth radii (RE) downtail, associated with the passage of a highly geoeffective, high-speed solar wind stream. The RAPID-IES signatures – interpreted in combination with magnetic field and lower-energy electron measurements from the FGM and PEACE experiments on Cluster, respectively, and with reference to energetic electron observations from the CEPPAD-IES instrument on Polar – are understood in terms of repeated encounters of the Cluster spacecraft with the tail plasma sheet in response to the resultant tail reconfiguration in each of a series of substorms. We consider the Cluster response for two of these substorms (identified according to the conventional expansion phase onset indicators of particle injection at geosynchronous orbit and Pi2 pulsations at Earth) in terms of two possible tail configurations in which a Near-Earth Neutral Line forms either antisunward or sunward of the Cluster spacecraft. The latter scenario, in which the reconnection X-line is assumed to form sunward of Cluster and subsequently migrate downtail such that the spacecraft become engulfed in a tailward expanding plasma sheet, is shown to be more consistent with the observations.
Resumo:
Using a numerical implementation of the Cowley and Lockwood (1992) model of flow excitation in the magnetosphere–ionosphere (MI) system, we show that both an expanding (on a _12-min timescale) and a quasiinstantaneous response in ionospheric convection to the onset of magnetopause reconnection can be accommodated by the Cowley–Lockwood conceptual framework. This model has a key feature of time dependence, necessarily considering the history of the coupled MI system. We show that a residual flow, driven by prior magnetopause reconnection, can produce a quasi-instantaneous global ionospheric convection response; perturbations from an equilibrium state may also be present from tail reconnection, which will superpose constructively to give a similar effect. On the other hand, when the MI system is relatively free of pre-existing flow, we can most clearly see the expanding nature of the response. As the open-closed field line boundary will frequently be in motion from such prior reconnection (both at the dayside magnetopause and in the cross-tail current sheet), it is expected that there will usually be some level of combined response to dayside reconnection.
Resumo:
We apply a numerical model of time-dependent ionospheric convection to two directly driven reconnection pulses during a 15-min interval of southward IMF on 26 November 2000. The model requires an input magnetopause reconnection rate variation, which is here derived from the observed variation in the upstream IMF clock angle, q. The reconnection rate is mapped to an ionospheric merging gap, the MLT extent of which is inferred from the Doppler-shifted Lyman-a emission on newly opened field lines, as observed by the FUV instrument on the IMAGE spacecraft. The model is used to reproduce a variety of features observed during this event: SuperDARN observations of the ionospheric convection pattern and transpolar voltage; FUV observations of the growth of patches of newly opened flux; FUVand in situ observations of the location of the Open-Closed field line Boundary (OCB) and a cusp ion step. We adopt a clock angle dependence of the magnetopause reconnection electric field, mapped to the ionosphere, of the form Enosin4(q/2) and estimate the peak value, Eno, by matching observed and modeled variations of both the latitude, LOCB, of the dayside OCB (as inferred from the equatorward edge of cusp proton emissions seen by FUV) and the transpolar voltage FPC (as derived using the mapped potential technique from SuperDARN HF radar data). This analysis also yields the time constant tOCB with which the open-closed boundary relaxes back toward its equilibrium configuration. For the case studied here, we find tOCB = 9.7 ± 1.3 min, consistent with previous inferences from the observed response of ionospheric flow to southward turnings of the IMF. The analysis confirms quantitatively the concepts of ionospheric flow excitation on which the model is based and explains some otherwise anomalous features of the cusp precipitation morphology.