963 resultados para Mass spectroscopy
Resumo:
The thermal behavior of kaolinite–urea intercalation complex was investigated by thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). In addition, the interaction mode of urea molecules intercalated into the kaolinite gallery was studied by means of molecular dynamics simulation. Three main mass losses were observed at 136 °C, in the range of 210–270 °C, and at 500 °C in the TG–DSC curves, which were, respectively, attributed to (1) melting of the surface-adsorbed urea, (2) removal of the intercalated urea, and (3) dehydroxylation of the deintercalated kaolinite. The three DSC endothermic peaks at 218, 250, and 261 °C were related to the successive removals of intercalated urea with three different distribution structures. Based on the angle between the dipole moment vector of urea and the basal surface of kaolinite, the three urea models could be described as follows: (1) Type A, the dipole moment vector is nearly parallel to the basal surface of kaolinite; (2) Type B, the dipole moment vector points to the silica tetrahedron with the angle between it and the basal surface of kaolinite ranging from 20°to 40°; and (3) Type C, the dipole moment vector is nearly perpendicular to the basal surface of kaolinite. The three distribution structures of urea molecules were validated by the results of the molecular dynamics simulation. Furthermore, the thermal behavior of the kaolinite–urea intercalation complex investigated by TG–DSC was also supported by FTIR and XRD analyses.
Resumo:
Silylated kaolinites were synthesized at 80°C without the use of inert gas protection. The method presented started with mechanical grinding of kaolinite, followed by grafting with 3-aminopropyltriethoxysilane (APTES). The mechanical grinding treatment destroyed the ordered sheets of kaolinite, formed fine fragments and generated broken bonds (undercoordinated metal ions). These broken bonds served as new sites for the condensation with APTES. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of –CH2 from APTES. 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (29Si CP/MAS NMR) showed that the principal bonding mechanism between APTES and kaolinite fitted a tridentate silylation model (T3) with a chemical shift at 66.7 ppm. The silane loadings of the silylated samples were estimated from the mass loss obtained by TG-DTG curves. The results showed that the 6-hour ground kaolinite could be grafted with the most APTES (7.0%) using cyclohexane as solvent. The loaded amount of APTES in the silylated samples obtained in different solvents decreased in the order as: nonpolar solvent > polar solvent with low dielectric constant (toluene) > polar solvent with high dielectric constant (ethanol).
Resumo:
The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.
Resumo:
We have studied the mineral poldervaartite CaCa\[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn\[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm−1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm−1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm−1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.
Resumo:
Enhancement of bone mineral acquisition during growth may be a useful preventive strategy against osteoporosis. The aim of this study was to explore the lean mass, strength, and bone mineral response to a 10-month, high-impact, strength-building exercise program in 71 premenarcheal girls, aged 9–10 years. Lean body mass, total body (TB), lumbar spine (LS), proximal femur (PF), and femoral neck (FN) bone mineral were measured using the Hologic QDR 2000+ bone densitometer. Strength was assessed using a grip dynamometer and the Cybex isokinetic dynamometer (Cybex II). At baseline, no significant difference in body composition, pubertal development, calcium intake, physical activity, strength, or bone mineral existed between groups. At completion, there were again no differences in height, total body mass, pubertal development, calcium intake, or external physical activity. In contrast, the exercise group gained significantly more lean mass, less body fat content, greater shoulder, knee and grip strength, and greater TB, LS, PF, and FN BMD (exercise: TB 3.5%, LS 4.8%, PF 4.5%, and FN 12.0%) compared with the controls (controls: TB 1.2%, LS 1.2%, PF 1.3%, and FN 1.7%). TB bone mineral content (BMC), LS BMC, PF BMC, FN BMC, LS bone mineral apparent density (BMAD), and FN bone area also increased at a significantly greater rate in the exercise group compared with the controls. In multiple regression analysis, change in lean mass was the primary determinant of TB, FN, PF, and LS BMD accrual. Although a large proportion of bone mineral accrual in the premenarcheal skeleton was related to growth, an osteogenic effect was associated with exercise. These results suggest that high-impact, strength building exercise is beneficial for premenarcheal strength, lean mass gains, and bone mineral acquisition.
Resumo:
We report rapid and ultra-sensitive detection system for 2,4,6-trinitrotoluene (TNT) using unmodified gold nanoparticles and surface-enhanced Raman spectroscopy (SERS). First, Meisenheimer complex has been formed in aqueous solution between TNT and cysteamine in less than 15 min of mixing. The complex formation is confirmed by the development of a pink colour and a new UV–vis absorption band around 520 nm. Second, the developed Meisenheimer complex is spontaneously self-assembled onto unmodified gold nanoparticles through a stable Au–S bond between the cysteamine moiety and the gold surface. The developed mono layer of cysteamine-TNT is then screened by SERS to detect and quantify TNT. Our experimental results demonstrate that the SERS-based assay provide an ultra-sensitive approach for the detection of TNT down to 22.7 ng/L. The unambiguous fingerprint identification of TNT by SERS represents a key advantage for our proposed method. The new method provides high selectivity towards TNT over 2,4 DNT and picric acid. Therefore it satisfies the practical requirements for the rapid screening of TNT in real life samples where the interim 24-h average allowable concentration of TNT in waste water is 0.04 mg/L.
Resumo:
Recent studies have shown that ultrasound transit time spectroscopy (UTTS) is an alternative method to describe ultrasound wave propagation through complex samples as an array of parallel sonic rays. This technique has the potential to characterize bone properties including volume fraction and may be implemented in clinical systems to predict osteoporotic fracture risk. In contrast to broadband ultrasound attenuation, which is highly frequency dependent, we hypothesise that UTTS is frequency independent. This study measured 1 MHz and 5 MHz broadband ultrasound signals through a set of acrylic step-wedge samples. Digital deconvolution of the signals through water and each sample was applied to derive a transit time spectrum. The resulting spectra at both 1 MHz and 5 MHz were compared to the predicted transit time values. Linear regression analysis yields agreement (R2) of 99.23% and 99.74% at 1 MHz and 5 MHz respectively indicating frequency independence of transit time spectra.
Resumo:
Samples of marble from Chillagoe, North Queensland have been analysed using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. Different types of marble were studied including soft white marble, hard white marble and a black marble. In this work, we try to ascertain why the black marble has this colour. Chemical analyses provide evidence for the presence of minerals other calcite in the marble, including the pyrite mineral. Some of these chemical analyses correspond to pyrite minerals in the black marble. The Raman spectra of these crystals were obtained and the Raman spectrum corresponds to that of pyrite from the RRUFF data base. The combination of SEM with EDS and Raman spectroscopy enables the characterisation of the mineral pyrite in Chillagoe black marble.
Resumo:
Marble from the Chillagoe deposits was extensively used in the construction of Australia’s parliament house. Near infrared (NIR) spectroscopy has been applied to study the quality of marble from the Chillagoe marble deposits and to distinguish between different types of marble in the Chillagoe deposits. A comparison of the NIR spectra of marble with dolomite and monohydrocalcite is made. The spectrum of the marble closely resembles that of monohydrocalcite and is different from that of dolomite. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra. Marble is characterised by NIR bands at 4005, 4268 and 4340 cm–1, attributed to carbonate combination bands and overtones. Marble also shows NIR bands at 5005, 5106, 5234 and 5334 cm–1 assigned to water combination bands. Finally the NIR spectrum of the marble displays broad low-intensity features centred upon 6905 cm–1 attributed to the water first overtones. It appears feasible to identify marble through the use of NIR spectroscopy.
Resumo:
The mineral tilleyite-Y, a carbonate-silicate of calcium, has been studied by scanning electron microscopy with chemical analysis using energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the tilleyite structure. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water in different molecular environments in the structure of tilleyite. Vibrational spectroscopy offers new information on the mineral tilleyite.
Resumo:
The approach to remove greenhouse gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals, the formation of hydromagnesite, dypingite and nesquehonite are possible, thus necessitating a study of such minerals. These minerals with a hydrotalcite-related formulae have been characterised by a combination of infrared and near infrared spectroscopy. Layered double hydroxides (also known as anionic clays or hydrotalcites) are a group of layered clay minerals described by the general formula: [M1–x2+Mx3+(OH)2]x+[An–]x/n∙mH2O. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030–7235 cm–1 and 10,490–10,570 cm–1 spectral ranges. Intense (CO3)2– symmetrical and anti-symmetrical stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen-bonded to the carbonate anion in the mineral structure. NIR spectroscopy offers a method for quickly analysing such materials.
Resumo:
This paper investigates the reasons why some technologies, defying general expectations and the established models of technological change, may not disappear from the market after having been displaced from their once-dominant status. Our point of departure is that the established models of technological change are not suitable to explain this as they predominantly focus on technological dominance, giving attention to the technologies that display highest performance levels and gain greatest market share. And yet, technological landscapes are rife with technological designs that do not fulfil these conditions. Using the LP record as an empirical case, we propose that the central mechanism at play in the continuing market presence of once-dominant technologies is the recasting of their technological features from the functional-utilitarian to the aesthetic realm, with an additional element concerning communal interaction among users. The findings that emerge from our quantitative textual analysis of over 200,000 posts on a prominent online LP-related discussion forum (between 2002 and 2010) also suggest that the post-dominance technology adopters and users appear to share many key characteristics with the earliest adopters of new technologies, rather than with late-stage adopters which precede them.
Resumo:
Increasing worldwide terrorist attacks involving explosives presents a growing need for a rapid and ranged explosive detection method that can safely be deployed in the field. Stand-off Raman spectroscopy shows great promise; however, the radiant exposures of lasers required for adequate signal generation are often much greater than what is safe for the eye or the skin, restricting use of the technique to un-populated areas. Here, by determining the safe exposure levels for lasers typically used in Raman spectroscopy, optimal parameter values are identified, which produce the largest possible detection range using power densities that do not exceed the eye-safe limit. It is shown that safe ultraviolet pulse energies can be more than three orders of magnitude greater than equivalent safe visible pulse energies. Coupling this to the 16-fold increase in Raman signal obtained in the ultraviolet at 266 nm over that at 532 nm results in a 131 times larger detection range for the eye-safe 266-nm system over an equivalent eye-safe 532-nm laser system. For the Raman system described here, this translates to a maximum range of 42 m for detecting Teflon with a 266-nm laser emitting a 100-mm diameter beam of 23.5-mJ nanosecond pulses.
Resumo:
It is well known that the neutralisation of Bayer liquor with seawater causes the precipitation of stable alkaline products and a reduction in pH and dissolved metal concentrations in the effluent. However, there is limited information available on solution chemistry effects on the stability and reaction kinetics of these precipitates. This investigation shows the influence of reactive species (magnesium and calcium) in seawater on precipitate stabilities and volumetric efficiencies during the neutralisation of bauxite refinery residues. Correlations between synthetic seawater solutions and real samples of seawater (filtered seawater, nanofiltered seawater and reverse osmosis brine) have been made. These investigations have been used to confirm that alternative seawater sources can be used to increase the productivity potential of the neutralisation process with minimal implications on the composition and stability of precipitates formed. The volume efficiency of the neutralisation process using synthetic analogues has been shown to be almost directly proportional with the concentration of magnesium. This was further confirmed in the nanofiltered seawater and reverse osmosis brine that showed increases in the efficiency of neutralisation by factors of 3 and 2 compared to seawater, which corresponds with relatively the same increase in the concentration of magnesium in these alternative seawater sources. An assessment of the chemical stability of the precipitates, volumetric efficiency, and discharge water quality have been determined using numerous techniques that include pH, conductivity, inductively coupled plasma optical emission spectroscopy, infrared spectroscopy, thermogravimetric analysis coupled to mass spectrometry and X-ray diffraction. Correlations between synthetic solution compositions and alternative seawater sources have been used to determine if alternative seawater sources are potential substitutes for seawater based on improvements in productivity, implementation costs, savings to operations and environmental benefits.
Resumo:
The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β- FeO(OH) and goethite α- FeO(OH) corrosion scale at the electrode surface.The corrosion rate was lowest at 0 rpm.The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.