978 resultados para Masonry bridges.
Resumo:
Culverts are common means to convey flow through the roadway system for small streams. In general, larger flows and road embankment heights entail the use of multibarrel culverts (a.k.a. multi-box) culverts. Box culverts are generally designed to handle events with a 50-year return period, and therefore convey considerably lower flows much of the time. While there are no issues with conveying high flows, many multi-box culverts in Iowa pose a significant problem related to sedimentation. The highly erosive Iowa soils can easily lead to the situation that some of the barrels can silt-in early after their construction, becoming partially filled with sediment in few years. Silting can reduce considerably the capacity of the culvert to handle larger flow events. Phase I of this Iowa Highway Research Board project (TR-545) led to an innovative solution for preventing sedimentation. The solution was comprehensively investigated through laboratory experiments and numerical modeling aimed at screening design alternatives and testing their hydraulic and sediment conveyance performance. Following this study phase, the Technical Advisory Committee suggested to implement the recommended sediment mitigation design to a field site. The site selected for implementation was a 3-box culvert crossing Willow Creek on IA Hwy 1W in Iowa City. The culvert was constructed in 1981 and the first cleanup was needed in 2000. Phase II of the TR 545 entailed the monitoring of the site with and without the selfcleaning sedimentation structure in place (similarly with the study conducted in laboratory). The first monitoring stage (Sept 2010 to December 2012) was aimed at providing a baseline for the operation of the as-designed culvert. In order to support Phase II research, a cleanup of the IA Hwy 1W culvert was conducted in September 2011. Subsequently, a monitoring program was initiated to document the sedimentation produced by individual and multiple storms propagating through the culvert. The first two years of monitoring showed inception of the sedimentation in the first spring following the cleanup. Sedimentation continued to increase throughout the monitoring program following the depositional patterns observed in the laboratory tests and those documented in the pre-cleaning surveys. The second part of Phase II of the study was aimed at monitoring the constructed self-cleaning structure. Since its construction in December 2012, the culvert site was continuously monitored through systematic observations. The evidence garnered in this phase of the study demonstrates the good performance of the self-cleaning structure in mitigating the sediment deposition at culverts. Besides their beneficial role in sediment mitigation, the designed self-cleaning structures maintain a clean and clear area upstream the culvert, keep a healthy flow through the central barrel offering hydraulic and aquatic habitat similar with that in the undisturbed stream reaches upstream and downstream the culvert. It can be concluded that the proposed self-cleaning structural solution “streamlines” the area upstream the culvert in a way that secures the safety of the culvert structure at high flows while producing much less disturbance in the stream behavior compared with the current constructive approaches.
Resumo:
The purpose of this manual is to organize, document, and combine Iowa Department of Transportation (Iowa DOT) policies and procedures for bridge inspection practices and post-inspection recommendations so Iowa DOT personnel, local agencies, and consultants will have a readily available resource for their use. Previously, bridge inspection policies and procedures were documented by various means, making it difficult to provide consistent answers to questions regarding bridge inspection topics. This manual is intended to ensure uniformity and document best practices for inspection of Iowa’s bridges, especially as experienced inspection personnel retire.
Resumo:
The purpose of this manual is to document the Iowa Department of Transportation (Iowa DOT) policy and procedures for load rating and posting of structures within the State of Iowa. This manual is intended to ensure that every bridge is rated as to its safe load carrying capacity. This manual presents guidelines and procedures for rating bridges and outlines the documentation required
Resumo:
The Bridge Maintenance Manual is published solely to provide information and guidance to bridge maintenance personnel when repairing bridges in the state of Iowa. This manual is issued to secure, so far as possible, uniformity of practice and procedure in methods developed by experience. Budgetary limitations, volumes and types of traffic, local conditions and other factors may render complete compliance with the guidelines set forth, in this manual, impossible or impractical. This manual is not purported to be a complete guide in all areas of bridge maintenance and is not a substitute for engineering judgment.
Resumo:
Video from the Iowa Department of Transportation about the construction and remodel of the Benton Street Bridge in Iowa City. This video is a interview of Samuel Cartsens interviewed but Hank Zeletel the Librarian of the DOT at the time the video was produced.
Resumo:
The overall system is designed to permit automatic collection of delamination field data for bridge decks. In addition to measuring and recording the data in the field, the system provides for transferring the recorded data to a personal computer for processing and plotting. This permits rapid turnaround from data collection to a finished plot of the results in a fraction of the time previously required for manual analysis of the analog data captured on a strip chart recorder. In normal operation the Delamtect provides an analog voltage for each of two channels which is proportional to the extent of any delamination. These voltages are recorded on a strip chart for later visual analysis. An event marker voltage, produced by a momentary push button on the handle, is also provided by the Delamtect and recorded on a third channel of the analog recorder.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
The first phase of this research involved an effort to identify the issues relevant to gaining a better understanding of the County Engineering profession. A related objective was to develop strategies to attract responsible, motivated and committed professionals to pursue County Engineering positions. In an era where a large percentage of County Engineers are reaching retirement age, the shrinking employment pool may eventually jeopardize the quality of secondary road systems not only in Iowa, but nationwide. As we move toward the 21st century, in an era of declining resources, it is likely that professional staff members in charge of secondary roads will find themselves working with less flexible budgets for the construction and maintenance of roads and bridges. It was important to understand the challenges presented to them, and the degree to which those challenges will demand greater expertise in prioritizing resource allocations for the rehabilitation and maintenance of the 10 million miles of county roads nationwide. Only after understanding what a county engineer is and what this person does will it become feasible for the profession to begin "selling itself", i.e., attracting a new generation of County Engineers. Reaching this objective involved examining the responsibilities, goals, and, sometimes, the frustrations experienced by those persons in charge of secondary road systems in the nine states that agreed to participate in the study. The second phase of this research involved addressing ways to counter the problems associated with the exodus of County Engineers who are reaching retirement age. Many of the questions asked of participants asked them to compare the advantages and disadvantages of public sector work with the private sector. Based on interviews with nearly 50 County Engineers and feedback from 268 who returned surveys for the research, issues relevant to the profession were analyzed and recommendations were made to the profession as it prepares to attract a new generation. It was concluded that both State and Regional Associations for County Engineers, and the National Association of County Engineers are most well-situated to present opportunities for continued professional development. This factor is appealing for those who are interested in competitive advantages as professionals. While salaries in the public sector may not be able to effectively compete with those offered by the private sector, it was concluded that this is only one factor of concern to those who are in the business of "public service". It was concluded, however, that Boards of Supervisors and their equivalents in other states will need to more clearly understand the value of the contributions made by County Engineers. Then the selling points the profession can hope to capitalize on can focus on the strength of state organizations and a strong national organization that act as clearinghouses of information and advocates for the profession, as well as anchors that provide opportunities for staying current on issues and technologies.
Resumo:
Flood-plain and channel-aggradation rates were estimated at selected bridge sites in central and eastern Iowa using four aggradation-measurement methods. Aggradation rates were quantified at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of Skunk River Basin. Measurement periods used to estimate average aggradation rates ranged in length from 1 to 98 years and varied among methods and sites. A direct comparison cannot be made between aggradation rates calculated using each of the four measurement methods because of differences in time periods and aggradational processes that were measured by each method.
Resumo:
Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.
Resumo:
The current shortage of highway funds precludes the immediate replacement of most of the bridges that have been evaluated as structurally deficient or functionally obsolete or both. A low water stream crossing (LWSC) affords an economical alternative to the replacement of a bridge with another bridge in many instances. However, the potential liability that might be incurred from the use of LWSCs has served as a deterrent to their use. Nor have guidelines for traffic control devices been developed for specific application to LWSCs. This research addressed the problems of liability and traffic control associated with the use of LWSCs. Input to the findings from this research was provided by several persons contacted by telephone plus 189 persons who responded to a questionnaire concerning their experience with LWSCs. It was concluded from this research that a significant potential for accidents and liability claims could result from the use of LWSCs. However, it was also concluded that this liability could be reduced to within acceptable limits if adequate warning of the presence of an LWSC were afforded to road users. The potential for accidents and liability could further be reduced if vehicular passage over an LWSC were precluded during periods when the road was flooded. Under these conditions, it is believed, the potential for liability from the use of an LWSC on an unpaved, rural road would be even less than that resulting from the continuing use of an inadequate bridge. The signs recommended for use in advance of an LWSC include two warning signs and one regulatory sign with legends as follows: FLOOD AREA AHEAD, IMPASSABLE DURING HIGH WATER, DO NOT ENTER WHEN FLOODED. Use of the regulatory sign would require an appropriate resolution by the Board of Supervisors having responsibility for a county road. Other recommendations include the optional use of either a supple mental distance advisory plate or an advisory speed plate, or both, under circumstances where these may be needed. It was also recommended HR-218 Liability & Traffic Control Considerations for Low Water Stream Crossings that LWSCs be used only on unpaved roads and that they not be used in locations where flooding of an LWSC would deprive dwelling places of emergency ground access.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
The Iowa Department of Transportation is responsible for maintaining approximately 3800 bridges throughout the State. Of these bridges approximately 3200 have concrete decks. The remaining bridges have been constructed or repaired with a Portland Cement (P. C.) concrete overlay. Surveys of the overlays have indicated a growing incidence of delaminations and surface distress. The need to replace or repair the overlay may be dictated by the amount of delamination in the deck. Additionally, the concrete bridges are periodically inspected and scheduled for the appropriate rehabilitation. Part of this analysis is an assessment of the amount of delamination present in the deck. The ability to accurately and economically identify delamination in overlays and bridge decks is necessary to cost-effectively evaluate and schedule bridge rehabilitation. There are two conventional methods currently being used to detect delaminations. One is ref erred to as a chain drag method. The other a electro-mechanical sounding method (delamtect). In the chain drag method, the concrete surface is struck using a heavy chain. The inspector then listens to the sound produced as the surface is struck. The delaminated areas produce a dull sound as compared to nondelaminated areas. This procedure has proved to be very time consuming, especially when a number of small areas of delamination are present. With the · electro-mechanical method, the judgement of the inspector has been eliminated. A· device with three basic components, a tapping device, a sonic receiver, and a system of signal interpretation has been developed. This· device is wheeled along the deck and the instrument receives and interprets the acoustic signals generated by the instrument which in turn are reflected through the concrete. A recently developed method of detecting delaminations is infrared thermography. This method of detection is based on the difference in surface temperature which exists between delaminated and nondelaminated concrete under certain atmospheric conditions. The temperature difference can reach 5°C on a very sunny day where dry pavement exists. If clouds are present, or the pavement is wet, then the temperature difference between the delaminated and nondelaminated concrete will not be as great and therefore more difficult to detect. Infrared thermography was used to detect delaminations in 17 concrete bridge decks, 2 P. C. concrete overlays, and 1 section of continuously reinforced concrete pavement (CRCP) in Iowa. Thermography was selected to assess the accuracy, dependability, and potential of the infrared thermographic technique.
Resumo:
Research funds were approved for the purchase of equipment designed to proportion and inject epoxy resins into delaminated areas of bridge decks. Through investigation and refining of this process, it was anticipated that a maintenance procedure would be developed to delay spalling of bridge decks by "gluing down" delaminated areas before spalling occurred.
Resumo:
The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a cumene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the HMWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans. Leakage through the double application occurred during a rain. Neither the single or double application were successful in preventing leakage through the cracks.