901 resultados para Machinery, Kinematics of.
Resumo:
This paper presents a proactive approach to load sharing and describes the architecture of a scheme, Concert, based on this approach. A proactive approach is characterized by a shift of emphasis from reacting to load imbalance to avoiding its occurrence. In contrast, in a reactive load sharing scheme, activity is triggered when a processing node is either overloaded or underloaded. The main drawback of this approach is that a load imbalance is allowed to develop before costly corrective action is taken. Concert is a load sharing scheme for loosely-coupled distributed systems. Under this scheme, load and task behaviour information is collected and cached in advance of when it is needed. Concert uses Linux as a platform for development. Implemented partially in kernel space and partially in user space, it achieves transparency to users and applications whilst keeping the extent of kernel modifications to a minimum. Non-preemptive task transfers are used exclusively, motivated by lower complexity, lower overheads and faster transfers. The goal is to minimize the average response-time of tasks. Concert is compared with other schemes by considering the level of transparency it provides with respect to users, tasks and the underlying operating system.
Resumo:
Direct chill (DC) casting is a core primary process in the production of aluminum ingots. However, its operational optimization is still under investigation with regard to a number of features, one of which is the issue of curvature at the base of the ingot. Analysis of these features requires a computational model of the process that accounts for the fluid flow, heat transfer, solidification phase change, and thermomechanical analysis. This article describes an integrated approach to the modeling of all the preceding phenomena and their interactions.
Resumo:
Experiments as well as computer modeling methods have been used to investigate the effect of the solder reflow process on the electrical characteristics and reliability of anisotropic conductive film (ACF) interconnections. In the experiments, the contact resistance of the ACF interconnections was found to increase after a subsequent reflow and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. In fact, nearly 40 percent of the joints were opened (i.e. lifted away from the pad) after the reflow with a peak temperature of 260 OC while no openings was observed when the peak temperature was 210 "C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a 3-D model of an ACF joint structure was built and Finite Element Analysis was used to predict the stress distrihution in the conductive particles, adhesive matrix and metal pads during the reflow process. The effects of the peak temperature, the CTE of the adhesive matrix and the bump height on the reliability of the ACF interconnections were discussed.
Resumo:
Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.
Resumo:
The CFD modelling of metals reduction processes particularly always seems to involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. These phases all interact and exhange mass, momentum and energy. Often it is the extent to which these multi-phase phemomena can be effectively captured within the CFD model which determines whether or not a tool of genuine use to the target industry sector can constructed. In this paper we discuss these issues in the context of two problems - one involving the injection of sparging gases into a steel continuous caster and the other based on the development of a novel process for aluminium electrolysis.
Resumo:
Using Acoustic Emission Testing (AET) to determine the onset of paper damage will be demonstrated on tensile coupons made from mechanical pulp. This technique is part of an EU funded project named the Fifth Frame Program. Its aim is to develop methods for determining specific damage mechanisms through AET. Various such techniques of damage detection will be demonstrated in the coming work.
Resumo:
Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).
Resumo:
In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfills as the application and curing of this type of underfill can be undertaken before and during the reflow process - adding high volume throughput. Adopting a no-flow underfill process may result in underfill entrapment between solder and fluid, voiding in the underfill, a possible delamination between underfill and surrounding surfaces. The magnitude of these phenomena may adversely affect the reliability of the assembly in terms of solder joint thermal fatigue. This paper presents both an experimental and mdeling analysis investigating the reliabity of a flip-chip component and how the magnitude of underfill entrapment may affect thermal-mechanical fatigue life.
Resumo:
The overall objective of this work is to develop a computational model of particle degradation during dilute-phasepneumatic conveying. A key feature of such a model is the prediction of particle breakage due to particle–wall collisions in pipeline bends. This paper presents a method for calculating particle impact degradation propensity under a range of particle velocities and particle sizes. It is based on interpolation on impact data obtained in a new laboratory-scale degradation tester. The method is tested and validated against experimental results for degradation at 90± impact angle of a full-size distribution sample of granulated sugar. In a subsequent work, the calculation of degradation propensity is coupled with a ow model of the solids and gas phases in the pipeline.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.
Resumo:
In this paper, the application of a continuum model is presented, which deals with the discharge of multi-component granular mixtures in core flow mode. The full model description is given (including the constitutive models for the segregation mechanism) and the interactions between particles at the microscopic level are parametrised in order to predict the development of stagnant zone boundaries during core flow discharges. Finally, the model is applied to a real industrial problem and predictions are made for the segregation patterns developed during mixture discharge in core flow mode.
Resumo:
Solder constitutive models are important as they are widely used in FEA simulations to predict the lifetime of soldered assemblies. This paper briefly reviews some common constitutive laws to capture creep in solder and presents work on laws capturing both kinematic hardening and damage. Inverse analysis is used to determine constants for the kinematic hardening law which match experimental creep curves. The mesh dependence of the damage law is overcome by using volume averaging and is applied to predict the crack path in a thermal cycled resistor component
Resumo:
The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation
Resumo:
This paper presents a description of a new agent based elevator sub-model developed as part of the buildingEXODUS software intended for both evacuation and circulation applications. A description of each component of the newly developed model is presented, including the elevator kinematics and associated pedestrian behaviour. The elevator model is then used to investigate a series of full building evacuation scenarios based on a hypothetical 50 floor building with four staircases and a population of 7,840 agents. The analysis explores the relative merits of using up to 32 elevators (arranged in four banks) and various egress strategies to evacuate the entire building population. Findings from the investigation suggest that the most efficient evacuation strategy utilises a combination of elevators and stairs to empty the building and clear the upper half of the building in minimum time. Combined stair elevator evacuation times have been shown to be as much as 50% faster than stair only evacuation times.