818 resultados para Machine learning,Keras,Tensorflow,Data parallelism,Model parallelism,Container,Docker
Resumo:
Background and objective: In this paper, we have tested the suitability of using different artificial intelligence-based algorithms for decision support when classifying the risk of congenital heart surgery. In this sense, classification of those surgical risks provides enormous benefits as the a priori estimation of surgical outcomes depending on either the type of disease or the type of repair, and other elements that influence the final result. This preventive estimation may help to avoid future complications, or even death. Methods: We have evaluated four machine learning algorithms to achieve our objective: multilayer perceptron, self-organizing map, radial basis function networks and decision trees. The architectures implemented have the aim of classifying among three types of surgical risk: low complexity, medium complexity and high complexity. Results: Accuracy outcomes achieved range between 80% and 99%, being the multilayer perceptron method the one that offered a higher hit ratio. Conclusions: According to the results, it is feasible to develop a clinical decision support system using the evaluated algorithms. Such system would help cardiology specialists, paediatricians and surgeons to forecast the level of risk related to a congenital heart disease surgery.
Resumo:
With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.
Resumo:
Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.
Resumo:
L’évolution continue des besoins d’apprentissage vers plus d’efficacité et plus de personnalisation a favorisé l’émergence de nouveaux outils et dimensions dont l’objectif est de rendre l’apprentissage accessible à tout le monde et adapté aux contextes technologiques et sociaux. Cette évolution a donné naissance à ce que l’on appelle l'apprentissage social en ligne mettant l'accent sur l’interaction entre les apprenants. La considération de l’interaction a apporté de nombreux avantages pour l’apprenant, à savoir établir des connexions, échanger des expériences personnelles et bénéficier d’une assistance lui permettant d’améliorer son apprentissage. Cependant, la quantité d'informations personnelles que les apprenants divulguent parfois lors de ces interactions, mène, à des conséquences souvent désastreuses en matière de vie privée comme la cyberintimidation, le vol d’identité, etc. Malgré les préoccupations soulevées, la vie privée en tant que droit individuel représente une situation idéale, difficilement reconnaissable dans le contexte social d’aujourd’hui. En effet, on est passé d'une conceptualisation de la vie privée comme étant un noyau des données sensibles à protéger des pénétrations extérieures à une nouvelle vision centrée sur la négociation de la divulgation de ces données. L’enjeu pour les environnements sociaux d’apprentissage consiste donc à garantir un niveau maximal d’interaction pour les apprenants tout en préservant leurs vies privées. Au meilleur de nos connaissances, la plupart des innovations dans ces environnements ont porté sur l'élaboration des techniques d’interaction, sans aucune considération pour la vie privée, un élément portant nécessaire afin de créer un environnement favorable à l’apprentissage. Dans ce travail, nous proposons un cadre de vie privée que nous avons appelé « gestionnaire de vie privée». Plus précisément, ce gestionnaire se charge de gérer la protection des données personnelles et de la vie privée de l’apprenant durant ses interactions avec ses co-apprenants. En s’appuyant sur l’idée que l’interaction permet d’accéder à l’aide en ligne, nous analysons l’interaction comme une activité cognitive impliquant des facteurs contextuels, d’autres apprenants, et des aspects socio-émotionnels. L'objectif principal de cette thèse est donc de revoir les processus d’entraide entre les apprenants en mettant en oeuvre des outils nécessaires pour trouver un compromis entre l’interaction et la protection de la vie privée. ii Ceci a été effectué selon trois niveaux : le premier étant de considérer des aspects contextuels et sociaux de l’interaction telle que la confiance entre les apprenants et les émotions qui ont initié le besoin d’interagir. Le deuxième niveau de protection consiste à estimer les risques de cette divulgation et faciliter la décision de protection de la vie privée. Le troisième niveau de protection consiste à détecter toute divulgation de données personnelles en utilisant des techniques d’apprentissage machine et d’analyse sémantique.
Resumo:
Internet traffic classification is a relevant and mature research field, anyway of growing importance and with still open technical challenges, also due to the pervasive presence of Internet-connected devices into everyday life. We claim the need for innovative traffic classification solutions capable of being lightweight, of adopting a domain-based approach, of not only concentrating on application-level protocol categorization but also classifying Internet traffic by subject. To this purpose, this paper originally proposes a classification solution that leverages domain name information extracted from IPFIX summaries, DNS logs, and DHCP leases, with the possibility to be applied to any kind of traffic. Our proposed solution is based on an extension of Word2vec unsupervised learning techniques running on a specialized Apache Spark cluster. In particular, learning techniques are leveraged to generate word-embeddings from a mixed dataset composed by domain names and natural language corpuses in a lightweight way and with general applicability. The paper also reports lessons learnt from our implementation and deployment experience that demonstrates that our solution can process 5500 IPFIX summaries per second on an Apache Spark cluster with 1 slave instance in Amazon EC2 at a cost of $ 3860 year. Reported experimental results about Precision, Recall, F-Measure, Accuracy, and Cohen's Kappa show the feasibility and effectiveness of the proposal. The experiments prove that words contained in domain names do have a relation with the kind of traffic directed towards them, therefore using specifically trained word embeddings we are able to classify them in customizable categories. We also show that training word embeddings on larger natural language corpuses leads improvements in terms of precision up to 180%.
Resumo:
Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.
Resumo:
L’évolution continue des besoins d’apprentissage vers plus d’efficacité et plus de personnalisation a favorisé l’émergence de nouveaux outils et dimensions dont l’objectif est de rendre l’apprentissage accessible à tout le monde et adapté aux contextes technologiques et sociaux. Cette évolution a donné naissance à ce que l’on appelle l'apprentissage social en ligne mettant l'accent sur l’interaction entre les apprenants. La considération de l’interaction a apporté de nombreux avantages pour l’apprenant, à savoir établir des connexions, échanger des expériences personnelles et bénéficier d’une assistance lui permettant d’améliorer son apprentissage. Cependant, la quantité d'informations personnelles que les apprenants divulguent parfois lors de ces interactions, mène, à des conséquences souvent désastreuses en matière de vie privée comme la cyberintimidation, le vol d’identité, etc. Malgré les préoccupations soulevées, la vie privée en tant que droit individuel représente une situation idéale, difficilement reconnaissable dans le contexte social d’aujourd’hui. En effet, on est passé d'une conceptualisation de la vie privée comme étant un noyau des données sensibles à protéger des pénétrations extérieures à une nouvelle vision centrée sur la négociation de la divulgation de ces données. L’enjeu pour les environnements sociaux d’apprentissage consiste donc à garantir un niveau maximal d’interaction pour les apprenants tout en préservant leurs vies privées. Au meilleur de nos connaissances, la plupart des innovations dans ces environnements ont porté sur l'élaboration des techniques d’interaction, sans aucune considération pour la vie privée, un élément portant nécessaire afin de créer un environnement favorable à l’apprentissage. Dans ce travail, nous proposons un cadre de vie privée que nous avons appelé « gestionnaire de vie privée». Plus précisément, ce gestionnaire se charge de gérer la protection des données personnelles et de la vie privée de l’apprenant durant ses interactions avec ses co-apprenants. En s’appuyant sur l’idée que l’interaction permet d’accéder à l’aide en ligne, nous analysons l’interaction comme une activité cognitive impliquant des facteurs contextuels, d’autres apprenants, et des aspects socio-émotionnels. L'objectif principal de cette thèse est donc de revoir les processus d’entraide entre les apprenants en mettant en oeuvre des outils nécessaires pour trouver un compromis entre l’interaction et la protection de la vie privée. ii Ceci a été effectué selon trois niveaux : le premier étant de considérer des aspects contextuels et sociaux de l’interaction telle que la confiance entre les apprenants et les émotions qui ont initié le besoin d’interagir. Le deuxième niveau de protection consiste à estimer les risques de cette divulgation et faciliter la décision de protection de la vie privée. Le troisième niveau de protection consiste à détecter toute divulgation de données personnelles en utilisant des techniques d’apprentissage machine et d’analyse sémantique.
Resumo:
On cover: C00-1469-145.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The marginalisation of the teaching and learning of legal research in the Australian law school curriculum is, in the author's experience, a condition common to many law schools. This is reflected in the reluctance of some law teachers to include legal research skills in the substantive law teaching schedule — often the result of unwillingness on the part of law school administrators to provide the resources necessary to ensure that such integration does not place a disproportionately heavy burden of assessment on those who are tempted. However, this may only be one of many reasons for the marginalisation of legal research in the law school experience. Rather than analyse the reasons for this marginalisation, this article deals with what needs to be done to rectify the situation, and to ensure that the teaching of legal research can be integrated into the law school curriculum in a meaningful way. This requires the use of teaching and learning theory which focuses on student-centred learning. This article outlines a model of legal research. It incorporates five transparent stages which are: analysis, contextualisation, bibliographic skills, interpretation and assessment and application.
Resumo:
Foreign exchange trading has emerged recently as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. A major issue for traders in the deregulated Foreign Exchange Market is when to sell and when to buy a particular currency in order to maximize profit. This paper presents novel trading strategies based on the machine learning methods of genetic algorithms and reinforcement learning.
Resumo:
Background: The multitude of motif detection algorithms developed to date have largely focused on the detection of patterns in primary sequence. Since sequence-dependent DNA structure and flexibility may also play a role in protein-DNA interactions, the simultaneous exploration of sequence-and structure-based hypotheses about the composition of binding sites and the ordering of features in a regulatory region should be considered as well. The consideration of structural features requires the development of new detection tools that can deal with data types other than primary sequence. Results: GANN ( available at http://bioinformatics.org.au/gann) is a machine learning tool for the detection of conserved features in DNA. The software suite contains programs to extract different regions of genomic DNA from flat files and convert these sequences to indices that reflect sequence and structural composition or the presence of specific protein binding sites. The machine learning component allows the classification of different types of sequences based on subsamples of these indices, and can identify the best combinations of indices and machine learning architecture for sequence discrimination. Another key feature of GANN is the replicated splitting of data into training and test sets, and the implementation of negative controls. In validation experiments, GANN successfully merged important sequence and structural features to yield good predictive models for synthetic and real regulatory regions. Conclusion: GANN is a flexible tool that can search through large sets of sequence and structural feature combinations to identify those that best characterize a set of sequences.
Resumo:
Selection of machine learning techniques requires a certain sensitivity to the requirements of the problem. In particular, the problem can be made more tractable by deliberately using algorithms that are biased toward solutions of the requisite kind. In this paper, we argue that recurrent neural networks have a natural bias toward a problem domain of which biological sequence analysis tasks are a subset. We use experiments with synthetic data to illustrate this bias. We then demonstrate that this bias can be exploitable using a data set of protein sequences containing several classes of subcellular localization targeting peptides. The results show that, compared with feed forward, recurrent neural networks will generally perform better on sequence analysis tasks. Furthermore, as the patterns within the sequence become more ambiguous, the choice of specific recurrent architecture becomes more critical.
Resumo:
Background. The factors behind the reemergence of severe, invasive group A streptococcal (GAS) diseases are unclear, but it could be caused by altered genetic endowment in these organisms. However, data from previous studies assessing the association between single genetic factors and invasive disease are often conflicting, suggesting that other, as-yet unidentified factors are necessary for the development of this class of disease. Methods. In this study, we used a targeted GAS virulence microarray containing 226 GAS genes to determine the virulence gene repertoires of 68 GAS isolates (42 associated with invasive disease and 28 associated with noninvasive disease) collected in a defined geographic location during a contiguous time period. We then employed 3 advanced machine learning methods (genetic algorithm neural network, support vector machines, and classification trees) to identify genes with an increased association with invasive disease. Results. Virulence gene profiles of individual GAS isolates varied extensively among these geographically and temporally related strains. Using genetic algorithm neural network analysis, we identified 3 genes with a marginal overrepresentation in invasive disease isolates. Significantly, 2 of these genes, ssa and mf4, encoded superantigens but were only present in a restricted set of GAS M-types. The third gene, spa, was found in variable distributions in all M-types in the study. Conclusions. Our comprehensive analysis of GAS virulence profiles provides strong evidence for the incongruent relationships among any of the 226 genes represented on the array and the overall propensity of GAS to cause invasive disease, underscoring the pathogenic complexity of these diseases, as well as the importance of multiple bacteria and/ or host factors.