959 resultados para MYOCARDIAL-ISCHEMIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine lead electrocardiograms of non-infarcted (N = 61) and infarcted (N = 71) female Wistar rats (200-250 g) were analyzed in order to distinguish left ventricle myocardial infarction (MI) larger than 40% (LMI) from MI smaller than 40% (SMI). MI larger than 40% clearly caused a deviation of ÂQRS and ÂT from normal values of 270-360 degrees to 90-270 degrees. Infarcted rats showed Q wave in D1 larger than 1 mm with 94% sensitivity and 100% specificity. The sum of QRS positivity in V1, V2 and V6 lower than 10 mm identified MI with 82% sensitivity and 100% specificity. The data showed that MI can be easily and reliably diagnosed by electrocardiogram in the rat. However, contradicting what is frequently believed, when specificity and sensitivity were analyzed focusing on MI size, none of these current electrocardiographic indices of MI size adequately discriminates LMI from SMI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ß-adrenergic stimulation with 1.0 µM isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 ± 5 vs 158 ± 5, P < 0.0005) and low catalase (7 ± 1 vs 9 ± 1, P < 0.005) and superoxide-dismutase (18 ± 2 vs 27 ± 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) is under the control of an SR protein named phospholamban (PLN). Dephosphorylated PLN inhibits SERCA2a, whereas phosphorylation of PLN at either the Ser16 site by PKA or the Thr17 site by CaMKII reverses this inhibition, thus increasing SERCA2a activity and the rate of Ca2+ uptake by the SR. This leads to an increase in the velocity of relaxation, SR Ca2+ load and myocardial contractility. In the intact heart, ß-adrenoceptor stimulation results in phosphorylation of PLN at both Ser16 and Thr17 residues. Phosphorylation of the Thr17 residue requires both stimulation of the CaMKII signaling pathways and inhibition of PP1, the major phosphatase that dephosphorylates PLN. These two prerequisites appear to be fulfilled by ß-adrenoceptor stimulation, which as a result of PKA activation, triggers the activation of CaMKII by increasing intracellular Ca2+, and inhibits PP1. Several pathological situations such as ischemia-reperfusion injury or hypercapnic acidosis provide the required conditions for the phosphorylation of the Thr17 residue of PLN, independently of the increase in PKA activity, i.e., increased intracellular Ca2+ and acidosis-induced phosphatase inhibition. Our results indicated that PLN was phosphorylated at Thr17 at the onset of reflow and immediately after hypercapnia was established, and that this phosphorylation contributes to the mechanical recovery after both the ischemic and acidic insults. Studies on transgenic mice with Thr17 mutated to Ala (PLN-T17A) are consistent with these results. Thus, phosphorylation of the Thr17 residue of PLN probably participates in a protective mechanism that favors Ca2+ handling and limits intracellular Ca2+ overload in pathological situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial contrast echocardiography has been used for assessing myocardial perfusion. Some concerns regarding its safety still remain, mainly regarding the induction of microvascular alterations. We sought to determine the bioeffects of microbubbles and real-time myocardial contrast echocardiography (RTMCE) in a closed-chest canine model. Eighteen mongrel dogs were randomly assigned to two groups. Nine were submitted to continuous intravenous infusion of perfluorocarbon-exposed sonicated dextrose albumin (PESDA) plus continuous imaging using power pulse inversion RTMCE for 180 min, associated with manually deflagrated high-mechanical index impulses. The control group consisted of 3 dogs submitted to continuous imaging using RTMCE without PESDA, 3 dogs received PESDA alone, and 3 dogs were sham-operated. Hemodynamics and cardiac rhythm were monitored continuously. Histological analysis was performed on cardiac and pulmonary tissues. No hemodynamic changes or cardiac arrhythmias were observed in any group. Normal left ventricular ejection fraction and myocardial perfusion were maintained throughout the protocol. Frequency of mild and focal microhemorrhage areas in myocardial and pulmonary tissue was similar in PESDA plus RTMCE and control groups. The percentages of positive microscopical fields in the myocardium were 0.4 and 0.7% (P = NS) in the PESDA plus RTMCE and control groups, respectively, and in the lungs they were 2.1 and 1.1%, respectively (P = NS). In this canine model, myocardial perfusion imaging obtained with PESDA and RTMCE was safe, with no alteration in cardiac rhythm or left ventricular function. Mild and focal myocardial and pulmonary microhemorrhages were observed in both groups, and may be attributed to surgical tissue manipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary artery disease is an atherosclerotic disease, which leads to narrowing of coronary arteries, deteriorated myocardial blood flow and myocardial ischaemia. In acute myocardial infarction, a prolonged period of myocardial ischaemia leads to myocardial necrosis. Necrotic myocardium is replaced with scar tissue. Myocardial infarction results in various changes in cardiac structure and function over time that results in “adverse remodelling”. This remodelling may result in a progressive worsening of cardiac function and development of chronic heart failure. In this thesis, we developed and validated three different large animal models of coronary artery disease, myocardial ischaemia and infarction for translational studies. In the first study the coronary artery disease model had both induced diabetes and hypercholesterolemia. In the second study myocardial ischaemia and infarction were caused by a surgical method and in the third study by catheterisation. For model characterisation, we used non-invasive positron emission tomography (PET) methods for measurement of myocardial perfusion, oxidative metabolism and glucose utilisation. Additionally, cardiac function was measured by echocardiography and computed tomography. To study the metabolic changes that occur during atherosclerosis, a hypercholesterolemic and diabetic model was used with [18F] fluorodeoxyglucose ([18F]FDG) PET-imaging technology. Coronary occlusion models were used to evaluate metabolic and structural changes in the heart and the cardioprotective effects of levosimendan during post-infarction cardiac remodelling. Large animal models were used in testing of novel radiopharmaceuticals for myocardial perfusion imaging. In the coronary artery disease model, we observed atherosclerotic lesions that were associated with focally increased [18F]FDG uptake. In heart failure models, chronic myocardial infarction led to the worsening of systolic function, cardiac remodelling and decreased efficiency of cardiac pumping function. Levosimendan therapy reduced post-infarction myocardial infarct size and improved cardiac function. The novel 68Ga-labeled radiopharmaceuticals tested in this study were not successful for the determination of myocardial blood flow. In conclusion, diabetes and hypercholesterolemia lead to the development of early phase atherosclerotic lesions. Coronary artery occlusion produced considerable myocardial ischaemia and later infarction following myocardial remodelling. The experimental models evaluated in these studies will enable further studies concerning disease mechanisms, new radiopharmaceuticals and interventions in coronary artery disease and heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic Chagas' disease cardiomyopathy (CCC) is an often fatal outcome of Trypanosoma cruzi infection, with a poorer prognosis than other cardiomyopathies. CCC is refractory to heart failure treatments, and is the major indication of heart transplantation in Latin America. A diffuse myocarditis, plus intense myocardial hypertrophy, damage and fibrosis, in the presence of very few T. cruzi forms, are the histopathological hallmarks of CCC. To gain a better understanding of the pathophysiology of CCC, we analyzed the protein profile in the affected CCC myocardium. Homogenates from left ventricular myocardial samples of end-stage CCC hearts explanted during heart transplantation were subjected to two-dimensional electrophoresis with Coomassie blue staining; protein identification was performed by MALDI-ToF mass spectrometry and peptide mass fingerprinting. The identification of selected proteins was confirmed by immunoblotting. We demonstrated that 246 proteins matched in gels from two CCC patients. They corresponded to 112 distinct proteins. Along with structural/contractile and metabolism proteins, we also identified proteins involved in apoptosis (caspase 8, caspase 2), immune system (T cell receptor ß chain, granzyme A, HLA class I) and stress processes (heat shock proteins, superoxide dismutases, and other oxidative stress proteins). Proteins involved in cell signaling and transcriptional factors were also identified. The identification of caspases and oxidative stress proteins suggests the occurrence of active apoptosis and significant oxidative stress in CCC myocardium. These results generated an inventory of myocardial proteins in CCC that should contribute to the generation of hypothesis-driven experiments designed on the basis of the classes of proteins identified here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The severity of left ventricular (LV) dysfunction in rats with myocardial infarction (MI) varies widely. Because homogeneity in baseline parameters is essential for experimental investigations, a study was conducted to establish whether Doppler echocardiography (DE) could accurately identify animals with high LV end-diastolic pressure as a marker of LV dysfunction soon after MI. Direct measurements of LV end-diastolic pressure were made and DE was performed simultaneously 1 week after surgically induced MI (N = 16) or sham-operation (N = 17) in female Wistar rats (200 to 250 g). The ratio of peak early (E) to late (A) diastolic LV filling velocities and the ratio of E velocity to peak early (Em) diastolic myocardial velocity were the best predictors of high LV end-diastolic pressure (>12 mmHg) soon after MI. Cut-off values of 1.77 for the E/A ratio (P = 0.001) identified rats with elevated LV end-diastolic pressure with 90% sensitivity and 80% specificity. Cut-off values of 20.4 for the E/Em ratio (P = 0.0001) identified rats with elevated LV end-diastolic pressure with 81.8% sensitivity and 80% specificity. Moreover, E/A and E/Em ratios were the only echocardiographic parameters independently associated with LV end-diastolic pressure in multiple linear regression analysis. Therefore, DE identifies rats with high LV end-diastolic pressure soon after MI. These findings have implications for using serial DE in animal selection and in the assessment of their response to experimental therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renal ischemia-reperfusion (IR) injury is the major cause of acute renal failure in native and transplanted kidneys. Mononuclear leukocytes have been reported in renal tissue as part of the innate and adaptive responses triggered by IR. We investigated the participation of CD4+ T lymphocytes in the pathogenesis of renal IR injury. Male mice (C57BL/6, 8 to 12 weeks old) were submitted to 45 min of ischemia by renal pedicle clamping followed by reperfusion. We evaluated the role of CD4+ T cells using a monoclonal depleting antibody against CD4 (GK1.5, 50 µ, ip), and class II-major histocompatibility complex molecule knockout mice. Both CD4-depleted groups showed a marked improvement in renal function compared to the ischemic group, despite the fact that GK1.5 mAb treatment promoted a profound CD4 depletion (to less than 5% compared to normal controls) only within the first 24 h after IR. CD4-depleted groups presented a significant improvement in 5-day survival (84 vs 80 vs 39%; antibody treated, knockout mice and non-depleted groups, respectively) and also a significant reduction in the tubular necrosis area with an early tubular regeneration pattern. The peak of CD4-positive cell infiltration occurred on day 2, coinciding with the high expression of ßC mRNA and increased urea levels. CD4 depletion did not alter the CD11b infiltrate or the IFN-g and granzyme-B mRNA expression in renal tissue. These data indicate that a CD4+ subset of T lymphocytes may be implicated as key mediators of very early inflammatory responses after renal IR injury and that targeting CD4+ T lymphocytes may yield novel therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triphenyltetrazolium chloride (TTC) staining and echocardiography (ECHO) are methods used to determine experimental myocardial infarction (MI) size, whose practical applicability should be expanded. Our objectives were to analyze the accuracy of ECHO in determining infarction size in rats during the first days following coronary occlusion and to test whether a simplified single measurement by TTC correctly indicates MI size, as determined by the average value for multiple slices. Infarction was induced in female Wistar rats by coronary artery occlusion and MI size analysis was performed after the acute (7th day) and chronic periods (after 4 weeks) by ECHO matched with TTC. ECHO and TTC showed similar values of MI size (% of left ventricle perimeter) in acute (ECHO: 33 ± 11, TTC: 35 ± 14) and chronic (ECHO: 38 ± 14, TTC: 39 ± 13 periods), and also presented an excellent correlation (r = 0.92, P < 0.001). Although measurements from different heart planes showed discrepancies, a single measurement acquired from the mid-ventricular level by TTC was a good estimate of MI size calculated by the average of multiple planes, with minimal disagreement (Bland-Altman test with mean ratio bias of 0.99 ± 0.07) and close to an ideal correlation (r = 0.99, P < 0.001). In the present study, ECHO was confirmed as a useful method for the determination of MI size even in the acute phase. Also, the single measure of a mid-ventricular section proposed as a simplification of the TTC method is a satisfactory prediction of average MI extension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+) handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c), sarcolemmal Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), ryanodine receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control) or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.