975 resultados para MITC PLATE
Resumo:
The sexual ornamentation used by male guppies to attract females comprises many components, each of which varies considerably among males. Although natural and sexual selection have been shown to contribute to divergence among populations in male sexual ornaments, the role of sexual selection in maintaining polymorphism within populations is less clear. We used both parametric quadratic regression and nonparametric projection pursuit regression techniques to reveal the major axes of non-linear sexual selection on male ornaments. We visualized the fitness surfaces defined by these axes using thin-plate splines to allow a direct comparison of the two methodologies. Identification of the major axes of selection and their visualization was critical in determining the form and strength of nonlinear selection. Both types of analysis revealed fitness surfaces comprising three peaks, suggesting that there is more than one way to make an attractive guppy. Disruptive selection may be an important process underlying the presence of multiple sexual ornaments and may contribute to the maintenance of the high levels of polymorphism in male sexual ornaments found in guppy populations.
Resumo:
Many lungfish of the tooth plated lineage, both fossil and living, are affected by dental and skeletal pathologies including dental caries, abscesses and cysts within the bone or tooth plate, osteopenia, bone hypertrophy, and malocclusion. These conditions, while influenced in part by structural relationships of soft and hard tissues in the tooth plates, jaw bones and surrounding oral tissues, can also be used as indicators of the kind of environment inhabited by the fish. The disease processes have specific structural consequences, related either to the pathology or to attempts to heal the damage, and usually alter the form and function of the tooth plate or bone. Consequently they can be distinguished from postmortem diagenetic or taphonomic effects, which alter the structure in less specific ways and show no sign of healing. Dental caries, the most common pathological condition in dipnoan dentitions, is recognisable in lungfish from the Devonian of Western Australia, the Tertiary of South Australia and the Northern Territory and from living lungfish in south east Queensland. Other pathologies have a more sporadic occurrence.
Resumo:
Background. A study of postural stability was undertaken to identify the relationship between vision and support surface across age decades. Understanding when reliance on vision for postural stability emerges and the support conditions contributing to this instability may provide the evidence required to introduce falls-prevention strategies in younger age decades. Methods. We measured postural stability in 453 women aged 20 to 80 years using the Balance Master force-plate system while the women performed the modified Clinical Test for the Sensory Interaction and Balance (firm and foam surfaces, eyes open and closed) and the Single-Limb Stance Test (eyes open and closed). Results. Women in their 60s and 70s were more unstable than younger women in bilateral stance on a firm surface with the eyes closed. This instability was evident from the 50s when a foam surface was introduced and from the 40s when single-limb stance was tested with eyes closed. A further decline in stability was demonstrated for each subsequent decade when the eyes were closed in single-limb stance. Conclusions. Age, visual condition, and support surface were significant variables influencing postural stability in women. Reliance on vision for postural stability was evident for women from the 40s when single-limb stance was tested, from the 50s when bilateral stance on foam was tested, and from the 60s when a firm surface was used. The cause(s) of this decline in stability requires further investigation, and screening for postural instability between the ages of 40 and 60 is advocated.
Resumo:
While the lungfish dentition is partially understood as far as morphology and light microscopic structure is concerned, the ultrastructure is not. Each tooth plate is associated with a dental lamina that develops from the inner layer of endodermal cells that form the oral epithelium. Dentines, bone and cartilage of the jaws differentiate from mesenchyme cells aggregating beneath the oral endothelium. Enamel, in the developing and in the mature form, has similarities to that of other early vertebrates, but unusual characters appear as development proceeds. Ameloblasts are capable of secreting enamel, and, with mononuclear osteoclasts, of remodelling the bone below the tooth plate. The forms of dentine, all based largely on an extracellular matrix of collagen and mineralised with biological apatite, differ from each other and from the underlying bone in the ultrastructure of associated cells and in the mineralised extracellular matrices produced. Cell processes emerging from the odontoblasts and from the osteoblasts vary in length, degree of branching and of anastomoses between the processes, although all of the cell types have large amounts of rough endoplasmic reticulum. Mineralisation of the extracellular matrices varies among the enamel, dentines and bone in the tooth plate. In addition, the development of the hard tissues of the tooth plates indicates that many of the similarities in fine structure of the dentition in lungfish, to tissues in other fish and amphibia, apparent early in development, disappear as the dentition matures. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.
Resumo:
Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4-6.7, 3-13 MJ kg(-1) and 0.16 x 10(6)-21 x 10(6), respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1-0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of +/-7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.
Resumo:
Lungfish of the tooth-plated lineage, both fossil and living, may be affected by alterations in the permanent tooth plates and associated jaw bones as they grow. In a few taxa, the unusual structures may be so common that they must be considered as normal for those species, or as a variation of the normal condition. In others the condition is rare, affecting only a few individuals. Variations, or anomalies, may appear in the growing tissues of the lungfish tooth plate at any time in the life cycle, although they usually appear early in development. Once the changes appear, they persist in the dentition. The altered structures include divided or intercalated ridges, short ridge anomaly, changes in the shape, number and position of cusps, pattern loss, and fused ridges or cusps. Criteria used to distinguish alteration from normal conditions are the incidence of the character in the population, the associated changes in the jaw bone, and the position of the altered structure in the tooth plate. The occurrence of similar changes across a wide range of different species suggests that they may have a genetic cause, especially when they are a rare occurrence in most taxa, but common enough to be a part of the normal variation in others. Prevalence of related anomalies throughout the history of the group suggests that dipnoans of the tooth-plated lineage are closely related, despite significant differences in morphology, microstructure, and function of the denfitions.
Resumo:
The novel mammalian gene Crim1 encodes a transmembrane bound protein with similarity to the secreted bone morphogenetic protein (BMP) antagonists, vertebrate Chordin, and its Drosophila homologue short gastrulation. Crim1 is expressed in the neural tube in mouse in a restricted pattern, but its function in central nervous system development is largely unknown. We isolated the chicken Crim1 orthologue and analyzed its expression in the developing neural tube. Chicken CRIM1 shares strong homology to human/mouse CRIM1 and C. elegans CRIM1-like proteins. Crim1 is expressed in a similar but not identical pattern to that in the developing spinal cord of mouse, including the notochord, floor plate, motor neurons, and the roof plate. Unlike follistatin, a secreted inhibitor of BMPs, in ovo electroporation of CRIM1, as a full-length transmembrane bound or secreted ectodomain was not sufficient to disrupt early patterning of the neural tube. However, ectodomain CRIM1 overexpression leads to an approximate 50% decrease in populations of specific ventral neuronal populations, including ISL-1(+) motor neurons, CHX-10(+) V1, and EN-1(+) V2 interneurons.
Resumo:
Three pathological fractures occurred secondary to osteolytic lesions of multiple myeloma. Two long bone fractures were each stabilised using interlocking nail fixation augmented with polymethyl meth acral ate bone cement. One vertebral fracture was stabilised using Steinmann pins and PMMA. Successful stabilisation, rapid return to function and improvement in quality of life occurred in all fractures. The patient survived approximately eight months on concurrent chemotherapy.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
A series of polyethylene-layered silicate nanocomposites has been studied as possible new candidates for rotational moulding. Two organically treated layered silicates were melt-compounded into a maleated linear low-density polyethylene host polymer at loadings of 6 and 9%, by weight. The morphology and properties of the nanocomposites were assessed by using dynamic mechanical thermal analysis, parallel-plate rheometry, wide-angle X-ray diffraction and transmission electron microscopy. The sintering behaviour of the nanocomposites was qualitatively assessed via hot-stage microscopy, indicating that the choice of nanofiller will play an important role in terms of producing nanocomposite materials with acceptable processability for rotational moulding. (C) 2003 Society of Chemical Industry.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.
Implementação de formulações do método dos elementos de contorno para associação de placas no espaço
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.