953 resultados para Linear multivariate methods
Resumo:
Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label-free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl-oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS(2) analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS(3) fragment ions from the immonium ions and collisionally-activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS(3) fragment ions were also identified for 2-hydroxytryptophan and 5-hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.
Resumo:
In this paper we examine the equilibrium states of periodic finite amplitude flow in a horizontal channel with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau coefficients and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infini- tesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighbourhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable.
Resumo:
Exploratory analysis of petroleum geochemical data seeks to find common patterns to help distinguish between different source rocks, oils and gases, and to explain their source, maturity and any intra-reservoir alteration. However, at the outset, one is typically faced with (a) a large matrix of samples, each with a range of molecular and isotopic properties, (b) a spatially and temporally unrepresentative sampling pattern, (c) noisy data and (d) often, a large number of missing values. This inhibits analysis using conventional statistical methods. Typically, visualisation methods like principal components analysis are used, but these methods are not easily able to deal with missing data nor can they capture non-linear structure in the data. One approach to discovering complex, non-linear structure in the data is through the use of linked plots, or brushing, while ignoring the missing data. In this paper we introduce a complementary approach based on a non-linear probabilistic model. Generative topographic mapping enables the visualisation of the effects of very many variables on a single plot, while also dealing with missing data. We show how using generative topographic mapping also provides an optimal method with which to replace missing values in two geochemical datasets, particularly where a large proportion of the data is missing.
Resumo:
Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.
Resumo:
In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Two real world data sets, containing electricity load demands and foreign exchange market prices, are used to test several different methods, ranging from linear models with fixed parameters, to non-linear models which adapt both parameters and model order on-line. Training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. The results of our experiments show that there are advantages to be gained in tracking real world non-stationary data through the use of more complex adaptive models.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
For a Switched Reluctance Motor (SRM), the flux linkage characteristic is the most basic magnetic characteristic, and many other quantities, including the incremental inductance, back emf, and electromagnetic torque can be determined indirectly from it. In this paper, two methods of measuring the flux linkage profile of an SRM from the phase winding voltage and current measurements, with and without rotor locking devices, are presented. Torque, incremental inductance and back emf characteristics of the SRM are then obtained from the flux linkage measurements. The torque of the SRM is also measured directly as a comparison, and the closeness of the calculated and directly measured torque curves suggests the validity of the method to obtain the SRM torque, incremental inductance and back emf profiles from the flux linkage measurements. © 2013 IEEE.
Resumo:
Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.
Resumo:
To achieve the Shannon Capacity Limit, we need to develop practical, effective and deployable non-linear devices to invert the non-linear effects of the transmission line. In this work, we will summarise the progress we are making to realise these, specifically looking at optical phase conjugation and phase regenerators as methods to improve non-linear tolerances. © 2014 IEEE.
Resumo:
Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.
Resumo:
* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.
Resumo:
Binary distributed representations of vector data (numerical, textual, visual) are investigated in classification tasks. A comparative analysis of results for various methods and tasks using artificial and real-world data is given.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
The paper describes a learning-oriented interactive method for solving linear mixed integer problems of multicriteria optimization. The method increases the possibilities of the decision maker (DM) to describe his/her local preferences and at the same time it overcomes some computational difficulties, especially in problems of large dimension. The method is realized in an experimental decision support system for finding the solution of linear mixed integer multicriteria optimization problems.