930 resultados para Linear and nonlinear correlation
Resumo:
BACKGROUND Several evidences indicate that gut microbiota is involved in the control of host energy metabolism. OBJECTIVE To evaluate the differences in the composition of gut microbiota in rat models under different nutritional status and physical activity and to identify their associations with serum leptin and ghrelin levels. METHODS IN A CASE CONTROL STUDY, FORTY MALE RATS WERE RANDOMLY ASSIGNED TO ONE OF THESE FOUR EXPERIMENTAL GROUPS: ABA group with food restriction and free access to exercise; control ABA group with food restriction and no access to exercise; exercise group with free access to exercise and feed ad libitum and ad libitum group without access to exercise and feed ad libitum. The fecal bacteria composition was investigated by PCR-denaturing gradient gel electrophoresis and real-time qPCR. RESULTS In restricted eaters, we have found a significant increase in the number of Proteobacteria, Bacteroides, Clostridium, Enterococcus, Prevotella and M. smithii and a significant decrease in the quantities of Actinobacteria, Firmicutes, Bacteroidetes, B. coccoides-E. rectale group, Lactobacillus and Bifidobacterium with respect to unrestricted eaters. Moreover, a significant increase in the number of Lactobacillus, Bifidobacterium and B. coccoides-E. rectale group was observed in exercise group with respect to the rest of groups. We also found a significant positive correlation between the quantity of Bifidobacterium and Lactobacillus and serum leptin levels, and a significant and negative correlation among the number of Clostridium, Bacteroides and Prevotella and serum leptin levels in all experimental groups. Furthermore, serum ghrelin levels were negatively correlated with the quantity of Bifidobacterium, Lactobacillus and B. coccoides-Eubacterium rectale group and positively correlated with the number of Bacteroides and Prevotella. CONCLUSIONS Nutritional status and physical activity alter gut microbiota composition affecting the diversity and similarity. This study highlights the associations between gut microbiota and appetite-regulating hormones that may be important in terms of satiety and host metabolism.
Resumo:
BACKGROUND The Bladder Cancer Index (BCI) is so far the only instrument applicable across all bladder cancer patients, independent of tumor infiltration or treatment applied. We developed a Spanish version of the BCI, and assessed its acceptability and metric properties. METHODS For the adaptation into Spanish we used the forward and back-translation method, expert panels, and cognitive debriefing patient interviews. For the assessment of metric properties we used data from 197 bladder cancer patients from a multi-center prospective study. The Spanish BCI and the SF-36 Health Survey were self-administered before and 12 months after treatment. Reliability was estimated by Cronbach's alpha. Construct validity was assessed through the multi-trait multi-method matrix. The magnitude of change was quantified by effect sizes to assess responsiveness. RESULTS Reliability coefficients ranged 0.75-0.97. The validity analysis confirmed moderate associations between the BCI function and bother subscales for urinary (r = 0.61) and bowel (r = 0.53) domains; conceptual independence among all BCI domains (r ≤ 0.3); and low correlation coefficients with the SF-36 scores, ranging 0.14-0.48. Among patients reporting global improvement at follow-up, pre-post treatment changes were statistically significant for the urinary domain and urinary bother subscale, with effect sizes of 0.38 and 0.53. CONCLUSIONS The Spanish BCI is well accepted, reliable, valid, responsive, and similar in performance compared to the original instrument. These findings support its use, both in Spanish and international studies, as a valuable and comprehensive tool for assessing quality of life across a wide range of bladder cancer patients.
Resumo:
Abstract Peroxisome Proliferator-Activated Receptors (PPARs) form a family of three nuclear receptors regulating important cellular and metabolic functions. PPARs control gene expression by directly binding to target promoters as heterodimers with the Retinoid X Receptor (RXR), and their transcriptional activity is enhanced upon activation by natural or pharmacological ligands. The binding of PPAR/RXR heterodimers on target promoters allows the anchoring of a series of coactivators and corepressors involved in promoter remodeling and the recruitment of the transcription machinery. The transcriptional output finally depends on a complex interplay between (i) the respective expression levels of PPARs, RXRs and of other nuclear receptors competing for DNA binding and RXR recruitment, (ii) the availability and the nature of PPAR and RXR ligands, (iii) the expression levels and the nature of the different coactivators and corepressors and (iv) the sequence and the epigenetic status of the promoter. Understanding how all these factors and signals integrate and fine-tune transcription remains a challenge but is necessary to understand the specificity of the physiological functions regulated by PPARs. The work presented herein focuses on the molecular mechanisms of PPAR action and aims at understanding how the interactions and mobility of the receptor modulate transcription in the physiological context of a living cell: Such observations in vivo rely on the use of engineered fluorescent protein chimeras and require the development and the application of complementary imaging techniques such as Fluorescence Recovery After Photobleaching (FRAP), Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS). Using such techniques, PPARs are shown to reside solely in the nucleus where they are constitutively associated with RXR but transcriptional activation by ligand binding -does not promote the formation of sub-nuclear structures as observed with other nuclear receptors. In addition, the engagement of unliganded PPARs in large complexes of cofactors in living cells provides a molecular basis for their ligand-independent activity. Ligand binding reduces receptor diffusion by promoting the recruitment of coactivators which further enlarge the size of PPAR complexes to acquire full transcriptional competence. Using these molecular approaches, we deciphered the molecular mechanisms through which phthalates, a class of pollutants from the plastic industry, interfere with PPARγ signaling. Mono-ethyl-hexyl-phthalate (MEHP) binding induces the recruitment of a specific subset of cofactors and translates into the expression of a specific subset of target genes, the transcriptional output being strongly conditioned by the differentiation status of the cell. This selective PPARγ modulation induces limited adipogenic effects in cellular models while exposure to phthalates in animal models leads to protective effects on glucose tolerance and diet-induced obesity. These results demonstrate that phthalates influence lipid and carbohydrate metabolism through complex mechanisms which most likely involve PPARγ but also probably PPARα and PPARß, Altogether, the molecular and physiological demonstration of the interference of pollutants with PPAR action outlines an important role of chemical exposure in metabolic regulations. Résumé Les PPARs (Peroxisome Proliferator-Activated Receptors) forment une famille de récepteurs nucléaires qui régulent des fonctions cellulaires et métaboliques importantes. Les PPARs contrôlent l'expression des gènes en se liant directement à leurs promoteurs sous forme d'hétérodimères avec les récepteurs RXR (Retinoid X Receptor), et leur activité transcriptionnelle est stimulée par la liaison de ligands naturels ou pharmacologiques. L'association des hétérodimères PPAR/RXR avec les promoteurs des gènes cibles permet le recrutement de coactivateurs et de corépresseurs qui vont permettre le remodelage de la chromatine et le recrutement de la machinerie transcriptionnelle. Les actions transcriptionnelles du récepteur dépendent toutefois d'interactions complexes qui sont régulées par (i) le niveau d'expression des PPARs, des RXRs et d'autres récepteurs nucléaires entrant en compétition pour la liaison à l'ADN et l'association avec RXR, (ii) la disponibilité et la nature de ligands de PPAR et de RXR, (iii) les niveaux d'expression et la nature des différents coactivateurs et corépresseurs et (iv) la séquence et le marquage épigénétique des promoteurs. La compréhension des mécanismes qui permettent d'intégrer ces aspects pour assurer une régulation fine de l'activité transcriptionnelle est un défi qu'il est nécessaire de relever pour comprendre la spécificité des fonctions physiologiques régulées par les PPARs. Ce travail concerne l'étude des mécanismes d'action moléculaire des PPARs et vise à mieux comprendre comment les interactions du récepteur avec d'autres protéines ainsi que la mobilité de ce dernier régulent son activité transcriptionnelle dans le contexte physiologique des cellules vivantes. De telles observations reposent sur l'emploi de protéines fusionnées à des protéines fluorescentes ainsi que sur le développement et l'utilisation de techniques d'imagerie complémentaires telles que le FRAP (Fluorescence Recovery After Photobleaching), le FRET (Fluorescence Resonance Energy Transfer) ou la FCS (Fluorescence Corrélation Spectroscopy). En appliquant ces méthodes, nous avons pu montrer que les PPARs résident toujours dans le noyau où ils sont associés de manière constitutive à RXR, mais que l'ajout de ligand n'induit pas la formation de structures sub-nucléaires comme cela a pu être décrit pour d'autres récepteurs nucléaires. De plus, les PPARs sont engagés dans de larges complexes protéiques de cofacteurs en absence de ligand, ce qui procure une explication moléculaire à leur activité ligand-indépendante. La liaison du ligand réduit la vitesse de diffusion du récepteur en induisant le recrutement de coactivateurs qui augmente encore plus la taille des complexes afin d'acquérir un potentiel d'activation maximal. En utilisant ces approches moléculaires, nous avons pu caractériser les mécanismes permettant aux phtalates, une classe de polluants provenant de l'industrie plastique, d'interférer avec PPARγ. La liaison du mono-ethyl-hexyl-phtalate (NERF) à PPARγ induit un recrutement sélectif de cofacteurs, se traduisant par l'induction spécifique d'un sous-ensemble de gènes qui varie en fonction du niveau de différentiation cellulaire. La modulation sélective de PPARγ par le MEHP provoque une adipogenèse modérée dans des modèles cellulaires alors que l'exposition de modèles animaux aux phtalates induit des effets bénéfiques sur la tolérance au glucose et sur le développement de l'obésité. Toutefois, les phtalates ont une action complexe sur le métabolisme glucido-lipidique en faisant intervenir PPARγ mais aussi probablement PPARα et PPARß. Cette démonstration moléculaire et physiologique de l'interférence des polluants avec les récepteurs nucléaires PPAR souligne un rôle important de l'exposition à de tels composés dans les régulations métaboliques.
Resumo:
FNDC5/irisin has been recently postulated as beneficial in the treatment of obesity and diabetes because it is induced in muscle by exercise, increasing energy expenditure. However, recent reports have shown that WAT also secretes irisin and that circulating irisin is elevated in obese subjects. The aim of this study was to evaluate irisin levels in conditions of extreme BMI and its correlation with basal metabolism and daily activity. The study involved 145 female patients, including 96 with extreme BMIs (30 anorexic (AN) and 66 obese (OB)) and 49 healthy normal weight (NW). The plasma irisin levels were significantly elevated in the OB patients compared with the AN and NW patients. Irisin also correlated positively with body weight, BMI, and fat mass. The OB patients exhibited the highest REE and higher daily physical activity compared with the AN patients but lower activity compared with the NW patients. The irisin levels were inversely correlated with daily physical activity and directly correlated with REE. Fat mass contributed to most of the variability of the irisin plasma levels independently of the other studied parameters. Conclusion. Irisin levels are influenced by energy expenditure independently of daily physical activity but fat mass is the main contributing factor.
Resumo:
We systematically investigated the effect of heterology on RecA-mediated strand exchange between double-stranded linear and single-stranded circular DNA. Strand exchange took place through heterologies of up to 150-200 base pairs when the insertion was at the proximal (initiating) end of the duplex DNA but was completely blocked by an insert of only 22 base pairs placed at the distal end of the duplex. In the case of medial heterology created by insertion either in the duplex or the single-stranded DNA, the ability of RecA to exchange strands decreased as the heterology was shifted toward the distal end of the duplex. These results suggest that two different strand exchange mechanisms operate in the proximal and distal portions of the duplex substrate.
Resumo:
Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
BACKGROUND: The Foot and Ankle Ability Measure (FAAM) is a self reported questionnaire for patients with foot and ankle disorders available in English, German, and Persian. This study plans to translate the FAAM from English to French (FAAM-F) and assess the validity and reliability of this new version.METHODS: The FAAM-F Activities of Daily Living (ADL) and sports subscales were completed by 105 French-speaking patients (average age 50.5 years) presenting various chronic foot and ankle disorders. Convergent and divergent validity was assessed by Pearson's correlation coefficients between the FAAM-F subscales and the SF-36 scales: Physical Functioning (PF), Physical Component Summary (PCS), Mental Health (MH) and Mental Component Summary (MCS). Internal consistency was calculated by Cronbach's Alpha (CA). To assess test re-test reliability, 22 patients filled out the questionnaire a second time to estimate minimal detectable changes (MDC) and intraclass correlation coefficients (ICC).RESULTS: Correlations for FAAM-F ADL subscale were 0.85 with PF, 0.81 with PCS, 0.26 with MH, 0.37 with MCS. Correlations for FAAM-F Sports subscale were 0.72 with PF, 0.72 with PCS, 0.21 with MH, 0.29 with MCS. CA estimates were 0.97 for both subscales. Respectively for the ADL and Sports subscales, ICC were 0.97 and 0.94, errors for a single measure were 8 and 10 points at 95% confidence and the MDC values at 95% confidence were 7 and 18 points.CONCLUSION: The FAAM-F is valid and reliable for the self-assessment of physical function in French-speaking patients with a wide range of chronic foot and ankle disorders.
Resumo:
This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.
Resumo:
A cross-sectional study involving 235 subjects was conducted in 2011 to compare the opinions of nursing students regarding mental illness and related care practices at two institutions in the state of Paraná, Brazil. Following approval by the ethics committee, data collection was initiated using an instrument containing questions regarding the importance of personal characteristics, knowledge of mental health, and the Opinions about Mental Illness (OMI) scale. Statistical analyses, including the Mann-Whitney test, Chi-squared test, and Spearman correlation at , were performed using SPSSv.15. The students exhibited significantly different characteristics only for Benevolence. Regarding the importance of knowledge about mental health, in comparison with students from the State University of Londrina (Universidade Estadual de Londrina – UEL), students at the State University of Maringa (Universidade Estadual de Maringá – UEM) considered psychological aspects more comprehensively than technical knowledge. We conclude that there are differences between students at these institutions in terms of knowledge and the factor Benevolence. Further studies are necessary to identify the underlying causes of such differences.
Resumo:
Cross-sectional study that used the Social Network Index and the genogram to assess the social network of 110 family caregivers of dependent patients attended by a Home Care Service in São Paulo, Brazil. Data were analyzed using the test U of Mann-Whitney, Kruskal-Wallis and Spearman correlation. Results were considered statistically significant when p<0,05. Few caregivers participated in activities outside the home and the average number of people they had a bond was 4,4 relatives and 3,6 friends. Caregivers who reported pain and those who had a partner had higher average number of relatives who to trust. The average number of friends was higher in the group that reported use of medication for depression. Total and per capita incomes correlated with the social network. It was found that family members are the primary caregiver’s social network.
Resumo:
PURPOSE: EEG and somatosensory evoked potential are highly predictive of poor outcome after cardiac arrest; their accuracy for good recovery is however low. We evaluated whether addition of an automated mismatch negativity-based auditory discrimination paradigm (ADP) to EEG and somatosensory evoked potential improves prediction of awakening. METHODS: EEG and ADP were prospectively recorded in 30 adults during therapeutic hypothermia and in normothermia. We studied the progression of auditory discrimination on single-trial multivariate analyses from therapeutic hypothermia to normothermia, and its correlation to outcome at 3 months, assessed with cerebral performance categories. RESULTS: At 3 months, 18 of 30 patients (60%) survived; 5 had severe neurologic impairment (cerebral performance categories = 3) and 13 had good recovery (cerebral performance categories = 1-2). All 10 subjects showing improvements of auditory discrimination from therapeutic hypothermia to normothermia regained consciousness: ADP was 100% predictive for awakening. The addition of ADP significantly improved mortality prediction (area under the curve, 0.77 for standard model including clinical examination, EEG, somatosensory evoked potential, versus 0.86 after adding ADP, P = 0.02). CONCLUSIONS: This automated ADP significantly improves early coma prognostic accuracy after cardiac arrest and therapeutic hypothermia. The progression of auditory discrimination is strongly predictive of favorable recovery and appears complementary to existing prognosticators of poor outcome. Before routine implementation, validation on larger cohorts is warranted.
Resumo:
A new method of measuring joint angle using a combination of accelerometers and gyroscopes is presented. The method proposes a minimal sensor configuration with one sensor module mounted on each segment. The model is based on estimating the acceleration of the joint center of rotation by placing a pair of virtual sensors on the adjacent segments at the center of rotation. In the proposed technique, joint angles are found without the need for integration, so absolute angles can be obtained which are free from any source of drift. The model considers anatomical aspects and is personalized for each subject prior to each measurement. The method was validated by measuring knee flexion-extension angles of eight subjects, walking at three different speeds, and comparing the results with a reference motion measurement system. The results are very close to those of the reference system presenting very small errors (rms = 1.3, mean = 0.2, SD = 1.1 deg) and excellent correlation coefficients (0.997). The algorithm is able to provide joint angles in real-time, and ready for use in gait analysis. Technically, the system is portable, easily mountable, and can be used for long term monitoring without hindrance to natural activities.
Resumo:
This paper presents a test of the predictive validity of various classes ofQALY models (i.e., linear, power and exponential models). We first estimatedTTO utilities for 43 EQ-5D chronic health states and next these states wereembedded in health profiles. The chronic TTO utilities were then used topredict the responses to TTO questions with health profiles. We find that thepower QALY model clearly outperforms linear and exponential QALY models.Optimal power coefficient is 0.65. Our results suggest that TTO-based QALYcalculations may be biased. This bias can be avoided using a power QALY model.
Resumo:
Nocturnal bees in the genus Megalopta Smith, 1853 are generally collected using artificial light sources. However, between 1993 and 2000, a total of 946 females (no males were captured) were captured using aromatic baits commonly used for orchid bees (Euglossini) in five localities in Bauru region, São Paulo, Brazil. Aromatic compounds used in bait traps were: benzyl acetate, eucalyptol, eugenol, skatole, methyl salicylate, and vanillin. The Megalopta species collected were: M. guimaraesi (71.2% of total number of specimens), M. amoena (28.1%), and M. aegis (0.6%). Using the data from these traps, we showed that there was a positive and significant correlation between the abundance of individuals and meteorological factors, rainfall and temperature. Bees were more commonly collected in the spring (September to December) and summer (December to March) than in the autumn and winter, the latter characterized for being a drier and colder period. Variations in the abundance were also detected among localities and years. The most attractive compounds were eugenol (54%), methyl salicylate (22%), and eucalyptol (16%). The ability to detect smells may have an important role in searching for flowers during dim-light conditions. We suggest the use of aromatic compounds in future studies on the biology of Megalopta in the Neotropical region.