936 resultados para Limit cycles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to test (i) the effect of time of tissue and RNA extracts storage on ice and (ii) the effect of repeated freeze–thaw cycles on RNA integrity and gene expression of bovine reproductive tissues. Fragments of endometrium (ENDO), corpus luteum (CL) and ampulla (AMP) were subdivided and incubated for 0, 1, 3, 6, 12 or 24 h on ice. RNA extracts were incubated on ice for 0, 3, 12 or 24 h, or exposed to 1, 2, 4 or 6 freeze–thaw cycles. RNA integrity number (RIN) was estimated. Expression of progesterone receptor (PGR) and cyclophilin genes from RNA extracts stored on ice for 0 or 24 h, and 1 or 6 freeze–thaw cycles was measured by qPCR. Tissue and RNA extract incubation on ice, and repeated freeze–thaw cycles did not affect RIN values of RNA from ENDO, CL or AMP. Storage on ice or exposure to freeze–thaw cycles did not affect Cq values for PGR or cyclophilin genes. In conclusion, neither generalized RNA degradation nor specific RNA degradation was affected by storage of tissue or RNA extracts on ice for up to 24 h, or by up to 6 freeze–thaw cycles of RNA extracts obtained from bovine ENDO, CL and AMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the power series ring R= K[[x1,x2,x3,...]]on countably infinitely many variables, over a field K, and two particular K-subalgebras of it: the ring S, which is isomorphic to an inverse limit of the polynomial rings in finitely many variables over K, and the ring R', which is the largest graded subalgebra of R. Of particular interest are the homogeneous, finitely generated ideals in R', among them the generic ideals. The definition of S as an inverse limit yields a set of truncation homomorphisms from S to K[x1,...,xn] which restrict to R'. We have that the truncation of a generic I in R' is a generic ideal in K[x1,...,xn]. It is shown in Initial ideals of Truncated Homogeneous Ideals that the initial ideal of such an ideal converge to the initial ideal of the corresponding ideal in R'. This initial ideal need no longer be finitely generated, but it is always locally finitely generated: this is proved in Gröbner Bases in R'. We show in Reverse lexicographic initial ideals of generic ideals are finitely generated that the initial ideal of a generic ideal in R' is finitely generated. This contrast to the lexicographic term order. If I in R' is a homogeneous, locally finitely generated ideal, and if we write the Hilbert series of the truncated algebras K[x1,...,xn] module the truncation of I as qn(t)/(1-t)n, then we show in Generalized Hilbert Numerators that the qn's converge to a power series in t which we call the generalized Hilbert numerator of the algebra R'/I. In Gröbner bases for non-homogeneous ideals in R' we show that the calculations of Gröbner bases and initial ideals in R' can be done also for some non-homogeneous ideals, namely those which have an associated homogeneous ideal which is locally finitely generated. The fact that S is an inverse limit of polynomial rings, which are naturally endowed with the discrete topology, provides S with a topology which makes it into a complete Hausdorff topological ring. The ring R', with the subspace topology, is dense in R, and the latter ring is the Cauchy completion of the former. In Topological properties of R' we show that with respect to this topology, locally finitely generated ideals in R'are closed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se han eliminado las páginas en blanco

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Máster en Oceanografía. Programa de Doctorado en Oceanografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the exercise model allows for an adequate oxygen delivery (blood flow x Ca,O2), with only a minor role of Pa,O2 per se, when Pa,O2 is more than 55 mmHg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic organisms have sought out the delicate balance between efficient light harvesting under limited irradiance and regulated energy dissipation under excess irradiance. One of the protective mechanisms is the thermal energy dissipation through the xanthophyll cycle that may transform harmlessly the excitation energy into heat and thereby prevent the formation of damaging active oxygen species (AOS). Violaxanthin deepoxidase (VDE) converts violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) defending the photosynthetic apparatus from excess of light. Another important biological pathway is the chloroplast water-water cycle, which is referred to the electrons from water generated in PSII reducing atmospheric O2 to water in PSI. This mechanism is active in the scavenging of AOS, when electron transport is slowed down by the over-reduction of NADPH pool. The control of the VDE gene and the variations of a set of physiological parameters, such as chlorophyll florescence and AOS content, have been investigated in response to excess of light and drought condition using Arabidopsis thaliana and Arbutus unedo.. Pigment analysis showed an unambiguous relationship between xanthophyll de-epoxidation state ((A+Z)/(V+A+Z)) and VDE mRNA amount in not-irrigated plants. Unexpectedly, gene expression is higher during the night when xanthophylls are mostly epoxidated and VDE activity is supposed to be very low than during the day. The importance of the water-water cycle in protecting the chloroplasts from light stress has been examined through Arabidopsis plant with a suppressed expression of the key enzyme of the cycle: the thylakoid-attached copper/zinc superoxide dismutase. The analysis revealed changes in transcript expression during leaf development consistent with a signalling role of AOS in plant defence responses but no difference was found any in photosynthesis efficiency or in AOS concentration after short-term exposure to excess of light. Environmental stresses such as drought may render previously optimal light levels excessive. In these circumstances the intrinsic regulations of photosynthetic electron transport like xanthophyll and water-water cycles might modify metabolism and gene expression in order to deal with increasing AOS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present PhD thesis summarizes the three-years study about the neutronic investigation of a new concept nuclear reactor aiming at the optimization and the sustainable management of nuclear fuel in a possible European scenario. A new generation nuclear reactor for the nuclear reinassance is indeed desired by the actual industrialized world, both for the solution of the energetic question arising from the continuously growing energy demand together with the corresponding reduction of oil availability, and the environment question for a sustainable energy source free from Long Lived Radioisotopes and therefore geological repositories. Among the Generation IV candidate typologies, the Lead Fast Reactor concept has been pursued, being the one top rated in sustainability. The European Lead-cooled SYstem (ELSY) has been at first investigated. The neutronic analysis of the ELSY core has been performed via deterministic analysis by means of the ERANOS code, in order to retrieve a stable configuration for the overall design of the reactor. Further analyses have been carried out by means of the Monte Carlo general purpose transport code MCNP, in order to check the former one and to define an exact model of the system. An innovative system of absorbers has been conceptualized and designed for both the reactivity compensation and regulation of the core due to cycle swing, as well as for safety in order to guarantee the cold shutdown of the system in case of accident. Aiming at the sustainability of nuclear energy, the steady-state nuclear equilibrium has been investigated and generalized into the definition of the ``extended'' equilibrium state. According to this, the Adiabatic Reactor Theory has been developed, together with a New Paradigm for Nuclear Power: in order to design a reactor that does not exchange with the environment anything valuable (thus the term ``adiabatic''), in the sense of both Plutonium and Minor Actinides, it is required indeed to revert the logical design scheme of nuclear cores, starting from the definition of the equilibrium composition of the fuel and submitting to the latter the whole core design. The New Paradigm has been applied then to the core design of an Adiabatic Lead Fast Reactor complying with the ELSY overall system layout. A complete core characterization has been done in order to asses criticality and power flattening; a preliminary evaluation of the main safety parameters has been also done to verify the viability of the system. Burn up calculations have been then performed in order to investigate the operating cycle for the Adiabatic Lead Fast Reactor; the fuel performances have been therefore extracted and inserted in a more general analysis for an European scenario. The present nuclear reactors fleet has been modeled and its evolution simulated by means of the COSI code in order to investigate the materials fluxes to be managed in the European region. Different plausible scenarios have been identified to forecast the evolution of the European nuclear energy production, including the one involving the introduction of Adiabatic Lead Fast Reactors, and compared to better analyze the advantages introduced by the adoption of new concept reactors. At last, since both ELSY and the ALFR represent new concept systems based upon innovative solutions, the neutronic design of a demonstrator reactor has been carried out: such a system is intended to prove the viability of technology to be implemented in the First-of-a-Kind industrial power plant, with the aim at attesting the general strategy to use, to the largest extent. It was chosen then to base the DEMO design upon a compromise between demonstration of developed technology and testing of emerging technology in order to significantly subserve the purpose of reducing uncertainties about construction and licensing, both validating ELSY/ALFR main features and performances, and to qualify numerical codes and tools.