983 resultados para Light Steel Framing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive wear has been widely accepted as the type of wear which is most frequently encountered under fretting conditions. Present study has been carried out to study the mode of failure and mechanisms associated under conditions where strong adhesion prevails at the contact interface. Mechanical variables such as normal load, displacement amplitude, and environment conditions were controlled so as to simulate adhesion as the governing mechanism at the contact interface. Self-mated Stainless Steel (SS) and chromium carbide with 25% nickel chrome binder coatings using plasma spray and high-velocity oxy-fuel (HVOF) processes on SS were considered as the material for contacting bodies. Damage in the form of plastic deformation, fracture, and material transfer has been observed. Further, chromium carbide with 25% nickel chrome binder coatings using HVOF process on SS shows less fretting damage, and can be considered as an effective palliative against fretting damage, even under high vacuum conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this paper, approximate analytical expressions for the intensity of light scattered by a rough surface, whose elevation. xi(x,y) in the z-direction is a zero mean stationary Gaussian random variable. With (x,y) and (x',y') being two points on the surface, we have h. = 0 with a correlation, = sigma(2)g(r), where r = (x - x')(2) + ( y - y')(2)](1/2) is the distance between these two points. We consider g(r) = exp-r/l)(beta)] with 1 <= beta <= 2, showing that g(0) = 1 and g(r) -> 0 for r >> l. The intensity expression is sought to be expressed as f(v(xy)) = {1 + (c/2y)v(x)(2) + v(y)(2)]}(-y), where v(x) and v(y) are the wave vectors of scattering, as defined by the Beckmann notation. In the paper, we present expressions for c and y, in terms of sigma, l, and beta. The closed form expressions are verified to be true, for the cases beta = 1 and beta = 2, for which exact expressions are known. For other cases, i.e., beta not equal 1, 2 we present approximate expressions for the scattered intensity, in the range, v(xy) = (v(x)(2) + v(y)(2))(1/2) <= 6.0 and show that the relation for f(v(xy)), given above, expresses the scattered intensity quite accurately, thus providing a simple computational methods in situations of practical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a light sheet based imaging flow cytometry technique for simultaneous counting and imaging of cells on a microfluidic platform. Light sheet covers the entire microfluidic channel and thus omits the necessity of flow focusing and point scanning based technology. Another advantage lies in the orthogonal detection geometry that totally cuts-off the incident light, thereby substantially reducing the background in the detection. Compared to the existing state-of-art techniques the proposed technique shows marked improvement. Using fluorescently-coated Saccharomyces cerevisiae cells we have recorded cell counting with throughput as high as 2,090 cells/min in the low flow rate regime and were able to image the individual cells on-the-go. Overall, the proposed system is cost-effective and simple in channel geometry with the advantage of efficient counting in operational regime of low laminar flow. This technique may advance the emerging field of microfluidic based cytometry for applications in nanomedicine and point of care diagnostics. Microsc. Res. Tech. 76:1101-1107, 2013. (c) 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self assembled monolayer (SAM) of sodium oleate was generated on mild steel by the dip coating method. Formation of the SAM on mild steel was examined using Infrared Reflection Absorption Spectroscopy (IRRAS) and contact angle measurements. The chemical and anticorrosive properties of the SAM were analyzed using different techniques. IRRAS and water contact angle data revealed the crystallinity and chemical stability of the SAM modified mild steel. The electrochemical measurements showed that the mild steel with the sodium oleate derived SAM exhibited better corrosion resistance in saline water. The effect of temperature and pH on the SAM formation and its anti corrosion ability was explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light wave transmission - its compression, amplification, and the optical energy storage in an ultra slow wave medium (USWM) is studied analytically. Our phenomenological treatment is based entirely on the continuity equation for the optical energy flux, and the well-known distribution-product property of Dirac delta-function. The results so obtained provide a clear understanding of some recent experiments on light transmission and its complete stoppage in an USWM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noninvasive or minimally invasive identification of sentinel lymph node (SLN) is essential to reduce the surgical effects of SLN biopsy. Photoacoustic (PA) imaging of SLN in animal models has shown its promise for clinical use in the future. Here, we present a Monte Carlo simulation for light transport in the SLN for various light delivery configurations with a clinical ultrasound probe. Our simulation assumes a realistic tissue layer model and also can handle the transmission/reflectance at SLN-tissue boundary due to the mismatch of refractive index. Various light incidence angles show that for deeply situated SLNs the maximum absorption of light in the SLN is for normal incidence. We also show that if a part of the diffused reflected photons is reflected back into the skin using a reflector, the absorption of light in the SLN can be increased significantly to enhance the PA signal. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were synthesized by a simple, cost effective and environmental friendly route using Euphorbia tirucalli plant latex. The structural properties and morphological features of the phosphors were well studied by PXRD, FTIR, SEM and TEM measurements. The luminescent properties of ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were investigated from the excitation and emission spectra. The phosphor performance was evaluated by color co-ordinates. The values were well located in the near white region as a result it was highly useful for the fabrication of green component in WLEDs. The average particle size was found to be similar to 9-18 nm and same was confirmed by TEM and Scherrer's method. The highest photoluminescence (PL) and thermoluminescence (TL) intensity was obtained to be similar to 7 mol% Dy3+ concentration. A single TL glow peak was recorded at 172 degrees C at a warming rate of 2.5 degrees Cs (1). The intensity at 172 degrees C peak increases linearly up to 1 kGy and after that it diminishes. PL intensity was studied with different plant latex concentration (2-8 ml) and highest PL intensity was recorded for similar to 8 ml. The optimized phosphor showed good reusability, low fading and wide range of linearity with gamma-dose hence the phosphor was quite useful in radiation dosimetry. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrocenyl platinum(II) complexes (1-3), viz. Pt(Fc-tpy)Cl]Cl (1), Pt(Fc-tpy)(NPC)]Cl (2, HNPC = N-propargyl carbazole) and Pt(Fc-bpa)Cl]Cl (3), were prepared, characterized and their anti-proliferative properties in visible light in human keratinocyte (HaCaT) cell lines have been studied. Pt(Ph-tpy)Cl]Cl (4) was prepared and used as a control. Complexes 1 and 3, structurally characterized by X-ray crystallography, show distorted square-planar geometry for the platinum(II) centre. Complexes 1 and 2 having the Fc-tpy ligand showed an intense absorption band at similar to 590 nm. The ferrocenyl complexes are redox active showing the Fc(+)-Fc couple near 0.6 V vs. SCE in DMF-0.1 M tetrabutylammonium perchlorate (TBAP). Complexes 1-3 showed external binding to calf thymus DNA. Both 1 and 2 showed remarkable photocytotoxicity in HaCaT cell lines giving respective IC50 values of 9.8 and 12.0 mu M in visible light of 400-700 nm with low dark toxicity (IC50 > 60 mu M). Fluorescent imaging studies showed the spread of the complexes throughout the cell localising both in cytoplasm and the nucleus. The ferrocenyl complexes triggered apoptosis on light exposure as evidenced from the Annexin V-FITC/PI and DNA ladder formation assays. Spectral studies revealed the formation of ferrocenium ions upon photo-irradiation generating cytotoxic hydroxyl radicals via a Fenton type mechanism. The results are rationalized from a TDDFT study that shows involvement of ferrocene and the platinum coordinated terpyridine moiety as respective HOMO and LUMO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes VO(L-1)(phen)]Cl (1) and VO(L-2)(L-3)]Cl (2), in which HL1 is 2-{(benzimidazol-2-yl)methylimino]-methyl}phenol (sal-ambmz), HL2 is 2-({1-(anthracen-9-yl)methyl]-benzimidazol-2-yl}methylimino)-met hyl]phenol (sal-an-ambmz), phen is 1,10-phenanthroline and L-3 is dipyrido3,2-a:2,3-c]phenazine (dppz) conjugated to a Gly-Gly-OMe dipeptide moiety, were prepared, characterized, and their DNA binding, photoinduced DNA-cleavage, and photocytotoxic properties were studied. Fluorescence microscopy studies were performed by using complex 2 in HeLa and HaCaT cells. Complex 1, structurally characterized by X-ray crystallography, has a vanadyl group in VO2N4 core with the VO2+ moiety bonded to N,N-donor phen and a N,N,O-donor Schiff base. Complex 2, having an anthracenyl fluorophore, showed fluorescence emission bands at 397, 419, and 443nm. The complexes are redox-active exhibiting the V(IV)/V(III) redox couple near -0.85V versus SCE in DMF 0.1M tetrabutylammonium perchlorate (TBAP). Complex 2, having a dipeptide moiety, showed specific binding towards poly(dAdT)(2) sequence. The dppz-Gly-Gly-OMe complex showed significant DNA photocleavage activity in red light of 705nm through a hydroxyl radical ((OH)-O-.) pathway. Complex 2 showed photocytotoxicity in HaCaT and HeLa cells in visible light (400-700nm) and red light (620-700nm), however, the complex was less toxic in the dark. Fluorescence microscopy revealed the localization of complex 2 primarily in mitochondria. Apoptosis was found to occur inside mitochondria (intrinsic pathway) caused by ROS generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the controlled variation of luminescence of ZnO nanostructures from intense ultraviolet to bright visible light. Deliberate addition of surfactants in the reaction medium not only leads to growth anisotropy of ZnO, but also alters the luminescence property. ZnO nanoclusters comprising of very fine particles with crystallite sizes approximate to 15-22nm were prepared in a non-aqueous medium, either from a single alcohol or from their mixtures. Introduction of the aqueous solution of the surfactant helps in altering the microstructure of ZnO nanostructure to nanorods, nanodumb-bells as well as the luminescence property. The as-prepared powder material is found to be well crystallized. Defects introduced by the surfactant in aqueous medium play an important role in substantial transition in the optical luminescence. Chromaticity coordinates were found to lie in the yellow region of color space. This gives an impression of white light emission from ZnO nanocrystals, when excited by a blue laser. Oxygen vacancy is described as the major defect responsible for visible light emission as quantified by X-ray photoelectron spectroscopy and Raman analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light neutralino dark matter can be achieved in the Minimal Supersymmetric Standard Model if staus are rather light, with mass around 100 GeV. We perform a detailed analysis of the relevant supersymmetric parameter space, including also the possibility of light selectons and smuons, and of light higgsino- or wino-like charginos. In addition to the latest limits from direct and indirect detection of dark matter, ATLAS and CMS constraints on electroweak-inos and on sleptons are taken into account using a ``simplified models'' framework. Measurements of the properties of the Higgs boson at 125 GeV, which constrain amongst others the invisible decay of the Higgs boson into a pair of neutralinos, are also implemented in the analysis. We show that viable neutralino dark matter can be achieved for masses as low as 15 GeV. In this case, light charginos close to the LEP bound are required in addition to light right-chiral staus. Significant deviations are observed in the couplings of the 125 GeV Higgs boson. These constitute a promising way to probe the light neutralino dark matter scenario in the next run of the LHC. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanocrystals of different formulations have been extensively studied for use in thin-film photovoltaics. Materials used in such devices need to satisfy the stringent requirement of having large absorption cross sections. Hence, type-II semiconductor nanocrystals that are generally considered to be poor light absorbers have largely been ignored. In this article, we show that type-II semiconductor nanocrystals can be tailored to match the light-absorption abilities of other types of nanostructures as well as bulk semiconductors. We synthesize type-II ZnTe/CdS core/shell nanocrystals. This material is found to exhibit a tunable band gap as well as absorption cross sections that are comparable to (die. This result has significant implications for thin-film photovoltaics, where the use of type-II nanocrystals instead of pure semiconductors can improve charge separation while also providing a much needed handle to regulate device composition.