995 resultados para Library theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to simulate the rock alteration and metamorphic process in hydrothermal systems. In particular, we consider the fluid-rock interaction problems in pore-fluid saturated porous rocks. Since the fluid rock interaction takes place at the contact interface between the pore-fluid and solid minerals, it is governed by the chemical reaction which usually takes place very slowly at this contact interface, from the geochemical point of view. Due to the relative slowness of the rate of the chemical reaction to the velocity of the pore-fluid flow in the hydrothermal system to be considered, there exists a retardation zone, in which the conventional static theory in geochemistry does not hold true. Since this issue is often overlooked by some purely numerical modellers, it is emphasized in this paper. The related results from a typical rock alteration and metamorphic problem in a hydrothermal system have shown not only the detailed rock alteration and metamorphic process, but also the size of the retardation zone in the hydrothermal system. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a means of structuring specifications in real-time Object-Z: an integration of Object-Z with the timed refinement calculus. Incremental modification of classes using inheritance and composition of classes to form multi-component systems are examined. Two approaches to the latter are considered: using Object-Z's notion of object instantiation and introducing a parallel composition operator similar to those found in process algebras. The parallel composition operator approach is both more concise and allows more general modelling of concurrency. Its incorporation into the existing semantics of real-time Object-Z is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic Synechocystis sp. PCC6803 DnaB split mini-intein gene was constructed for the in vivo cyclization of recombinant proteins expressed in Escherichia coli. The system was used to cyclize the NH2-terminal domain of E. coli DnaB, the structure of which had been determined previously by NMR spectroscopy. Cyclization was found to proceed efficiently, with little accumulation of precursor, and the product was purified in high yield. The solution structure of cyclic DnaB-N is not significantly different from that of linear DnaB-N and it unfolds reversibly at temperatures similar to14 degreesC higher. Improved hydrogen bonding was observed in the first and last helices, and the length of the last helix was increased, while the 9-amino acid linker used to join the NH2 and COOH termini was found to be highly mobile. The measured thermodynamic stabilization of the structure (DeltaDeltaG approximate to 2 kcal/mol) agrees well with the value estimated from the reduced conformational entropy in the unfolded form. Simple polymer theory can be used to predict likely free energy changes resulting from protein cyclization and how the stabilization depends on the size of the protein and the length of the linker used to connect the termini.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the finite element simulations of reactive mineral carrying fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for Load, zinc and iron minerals in the regime of temperature-gradient-driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore-fluid velocity and the equilibrium concentration of this particular kind of mineral Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral-carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al-Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provided information about how individual workers perceive, describe and interpret episodes of problematic communication. Sixteen full-time workers (5 males, 11 females) were interviewed in depth about specific incidents of problematic communication within their workplace. Their descriptions of the attributed causes of the incidents were coded using a categorisation scheme developed from Coupland, Wieman, and Giles' (1991) model of sources of problematic communication. Communication problems were most commonly attributed to individual deficiency and group membership, although there were differences depending on the direction of communication. The most negative attributions (to personality flaws, to lack of skills, and to negative stereotypes of the outgroup) were most commonly applied by individuals to their supervisors, whilst attributions applied to co-workers and subordinates tended to be less negative, or even positive in some instances (where individuals attributed the fault to themselves). Overall, results highlighted distinctions between the perceptions of communication problems with supervisors and with subordinates, and are interpreted with reference to social identity theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the transformation of maximally entangled states under the action of Lorentz transformations in a fully relativistic setting. By explicit calculation of the Wigner rotation, we describe the relativistic analog of the Bell states as viewed from two inertial frames moving with constant velocity with respect to each other. Though the finite dimensional matrices describing the Lorentz transformations are non-unitary, each single particle state of the entangled pair undergoes an effective, momentum dependent, local unitary rotation, thereby preserving the entanglement fidelity of the bipartite state. The details of how these unitary transformations are manifested are explicitly worked out for the Bell states comprised of massive spin 1/2 particles and massless photon polarizations. The relevance of this work to non-inertial frames is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [1].