978 resultados para Liability for oil pollution damages
Resumo:
Combined effects of lack of firm and effective management measures for years, over exploitation with destructive fishing gears and interspecific competition, particularly among tilapiines and profound effects on the fish stocks of Lake Victoria and Kyoga. It has been proposed that these have been more important in the decline of the indigenous fisheries than predation or competition by Nile perch.
Resumo:
In recent years, the presence of crusts within near surface sediments found in deep water locations off the west coast of Angola has been of interest to hot-oil pipeline designers. The origin for these crusts is considered to be of biological origin, based on the observation of thousands of faecal pellets in natural crust core samples. This paper presents the results of laboratory tests undertaken on natural and faecal pellet-only samples. These tests investigate the role faecal pellets play in modifying the gemechanical behaviour of clayey sediments. It is found that faecal pellets are able to significantly alter both the strength and the average grain-size of natural sediments, and therefore, influence the permeability and stiffness. Hot-oil pipelines self-embed into and subsequent shear on crusts containing faecal pellets. Being able to predict the time required for installed pipelines to consolidate the underlying sediment and thus, how soon after pipe-laying, the interface strength will develop is of great interest to pipeline designers. It is concluded from wet-sieving samples before and after oedometer tests, that the process of pipe laying is unlikely to destroy pellets. They will therefore, be a major constituent of the sediment subject to soil-pipeline shearing behaviour during axial pipe-walking and lateral buckling. Based on the presented results, a discussion highlighting the key implications for pipeline design is therefore provided. Copyright © 2011 by ASME.
Extent of oxidation of hydrocarbons desorbing from the lubricant oil layer in spark-ignition engines
Resumo:
The extent of oxidation of hydrocarbons desorbing from the oil layer has been measured directly in a hydrogen-fueled, spark-ignited engine in which the lubricant oil was doped with a single component hydrocarbon. The amount of hydrocarbon desorbed and oxidized could be measured simultaneously as the dopant was only source of carbon-containing species. The fraction oxidized was strongly dependent on engine load, hydrogen fuel-air ratio and dopant chemical reactivity, but only modestly dependent on spark timing and nitrogen dilution levels below 20 percent. Fast FID measurements at the cylinder exit showed that the surviving hydrocarbons emerge late in the exhaust stroke. © Copyright 1996 Society of Automotive Engineers, Inc.
Resumo:
A technique has been developed to measure the desorption and subsequent oxidation of fuel in the oil layer by spiking the oil with liquid fuel and firing the engine on gaseous fuel or motoring with air. Experiments suggest that fuel desorption is not diffusion limited above 50°C and indicated that approximately two to four percent of the cylinder oil layer is fresh oil from the sump. The increase in hydrocarbon emissions is of the order of 100 ppmC1 per 1% liquid fuel introduced into the fresh oil in a methane fired engine at mid-speed and light load conditions. Calculations indicate that fuel desorbing from oil is much more likely to produce hydrocarbon emissions than fuel emerging from crevices. © Copyright 1994 Society of Automotive Engineers, Inc.
Resumo:
This paper analyzes reaction and thermal front development in porous reservoirs with reacting flows, such as those encountered in shale oil extraction. A set of dimensionless parameters and a 3D code are developed in order to investigate the important physical and chemical variables of such reservoirs when heated by in situ methods. This contribution builds on a 1D model developed for the precursor study to this work. Theory necessary for this study is presented, namely shale decomposition chemical mechanisms, governing equations for multiphase flow in porous media and necessary closure models. Plotting the ratio of the thermal wave speed to the fluid speed allows one to infer that the reaction wave front ends where this ratio is at a minimum. The reaction front follows the thermal front closely, thus allowing assumptions to be made about the extent of decomposition solely by looking at thermal wave progression. Furthermore, this sensitivity analysis showed that a certain minimum permeability is required in order to ensure the formation of a traveling thermal wave. It was found that by studying the non-dimensional governing parameters of the system one can ascribe characteristic values for these parameters for given initial and boundary conditions. This allows one to roughly predict the performance of a particular method on a particular reservoir given approximate values for initial and boundary conditions. Channelling and flow blockage due to carbon residue buildup impeded each method's performance. Blockage was found to be a result of imbalanced heating. Copyright 2012, Society of Petroleum Engineers.
Resumo:
Growing concerns regarding fluctuating fuel costs and pollution targets for gas emissions, have led the aviation industry to seek alternative technologies to reduce its dependency on crude oil, and its net emissions. Recently blends of bio-fuel with kerosine, have become an alternative solution as they offer "greener" aircraft and reduce demand on crude oil. Interestingly, this technique is able to be implemented in current aircraft as it does not require any modification to the engine. Therefore, the present study investigates the effect of blends of bio-synthetic paraffinic kerosine with Jet-A in a civil aircraft engine, focusing on its performance and exhaust emissions. Two bio-fuels are considered: Jatropha Bio-synthetic Paraffinic Kerosine (JSPK) and Camelina Bio-synthetic Paraffinic Kerosine (CSPK); there are evaluated as pure fuels, and as 10% and 50% blend with Jet-A. Results obtained show improvement in thrust, fuel flow and SFC as composition of bio-fuel in the blend increases. At design point condition, results on engine emissions show reduction in NO x, and CO, but increases of CO is observed at fixed fuel condition, as the composition of bio-fuel in the mixture increases. Copyright © 2012 by ASME.
Resumo:
The strength of glass fibre reinforced vinyl-ester laminates with multiple holes has been investigated experimentally. Different hole pattern configurations have been tested, primarily for unidirectional laminates. Unidirectional laminates have shown very low notch sensitivity and the laminate failure was governed by two competing failure modes; shear off failure and net section tensile failure.
Resumo:
A simple, sensitive, and accurate method for determination of polybrominated diphenyl ethers (PBDEs) in soil has been developed based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). Permethylated-beta-cyclodextrin/hydroxyl-termination silicone oil (PM-beta-CD/OH-TSO) fiber was first prepared by sol-gel technology and employed in SPME procedure. By exploiting the superiorities of sot-gel coating technique and the advantages of the high hydrophobic doughnut-shaped cavity of PM-beta-CD, the novel fiber showed desirable operational stability and extraction ability. After optimization on extraction conditions like water addition, extraction temperature, extraction time, salts effect, and solvents addition, the method was validated in soil samples, achieving good linearity (r>0.999), precision (R.S.D. < 10%), accuracy (recovery>78%), and detection limits (S/N =3) raging from 13.0 to 78.3 pg/g. (c) 2007 Published by Elsevier B.V.
Resumo:
Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders' demand for economically sustainable brownfield remediation and "green" practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the "sustainable remediation" concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making. The paper concludes that "sustainability" is becoming a new imperative in the environmental remediation field, with important implications for regulators, liability owners, consultants, contractors, and technology vendors. © 2014 Elsevier Ltd.
Resumo:
We investigated differences in delta N-15 of seston and icefishes from seven freshwater ecosystems with different trophic states in China. An increase of seston delta N-15 values was accompanied by an increase of total nitrogen and phosphorus concentrations. Significantly positive correlations were observed between delta N-15 of icefishes and delta N-15 of seston, total nitrogen and phosphorus concentrations. This study demonstrated that icefishes could be preferred indicators of anthropogenic contamination in test systems because they integrated waste inputs over long time periods and reflected the movement of waste through the pelagic food chain.
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Total air suspended particles (PM 100) collected from an urban location near a traffic line in Wuhan, China, were examined for estrogen using a recombinant yeast bioassay. Wuhan, located at the central part of China, is the fourth biggest city in China with 7 million populations. Today, Wuhan has developed into the biggest city and the largest traveling center of central China, becoming one of the important bases of industry, education and research. Wuhan is right at the confluent point of Yangzi River, the third longest river in the world, and its largest distributary Hanjiang, with mountains and more than 100 takes in downtown area. Therefore, by its unique landscape, Wuhan has formed clear four seasons with relatively long winter and summer and short spring and autumn. Foggy weather usually happen in early spring. The yeast line used in this assay stably expresses human estrogen receptor-alpha. Weak but clear estrogenic activities were detected in the organic phase of crude extracts of air particle materials (APM) in both sunny and foggy weather by 0.19-0.79 mug E2/gPM(100) which were statistically significantly elevated relative to the blank control responding from 20% to 50% of the maximum E2 response, and the estrogenic activity was much higher in foggy weather than in sunny weather. The estrogenic activities in the sub-fractions from chromatographic separation of APM sampled in foggy days were also determined. The results indicated that the responses of the fractions were obviously higher than the crude extracts. Since there is no other large pollution source nearby, the estrogenic material was most likely from vehicle emissions, house heating sources and oil fumes of house cooking. The GC/MS analysis of the PM100 collected under foggy weather showed that there were many phenol derivatives, oxy-PAHs and resin acids which have been reported as environmental estrogens. These results of the analysis of estrogenic potency in sunny and foggy weather in a subtropical city of China indicate that further studies are required to investigate the actual risks for the associated health and atmospheric system. (C) 2004 Elsevier Ltd. All rights reserved.