851 resultados para Landscape Units


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impacts of current and future changes in climate have been investigated for Irish vegetation. Warming has been observed over the last two decades, with impacts that are also strongly influenced by natural oscillations of the surrounding ocean, seen as fluctuations in the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. Satellite observations show that vegetation greenness increases in warmer years, a feature mirrored by increases in net ecosystem production observed for a grassland and a plantation forest. An ensemble of general circulation model simulations of future climates indicate temperature rises over the twenty-first century ranging from 1°C to 7°C, depending on future scenarios of greenhouse gas emissions. Net primary production is simulated to increase under all scenarios, due to the positive impacts of rising temperature, a modest rise of precipitation and rising carbon dioxide concentrations. In an optimistic scenario of reducing future emissions, CO2 concentration is simulated to flatten from about 2070, although temperatures continue to increase. Under this scenario Ireland could become a source of carbon, whereas under all other emission scenarios Ireland is a sink for carbon that may increase by up to three-fold over the twenty-first century. A likely and unavoidable impact of changing climate is the arrival of alien plant species, which may disrupt ecosystems and exert negative impacts on native biodiversity. Alien species arrive continually, with about 250 dated arrivals in the twentieth century. A simulation model indicates that this rate of alien arrival may increase by anything between two and ten times, dependent on the future climatic scenario, by 2050. Which alien species may become severely disruptive is, however, not known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community- weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a changing climate, Mediterranean ‘Garrigue’ xerophytes are increasingly recommended as suitable urban landscape plants in north-west Europe, based on their capacity to tolerate high temperature and reduced water availability during summer. Such species, however, have a poor reputation for tolerating waterlogged soils; paradoxically a phenomenon that may also increase in north-west Europe due to predictions for both higher volumes of winter precipitation, and short, but intensive periods of summer rainfall. This study investigated flooding tolerance in four landscape ‘Garrigue’ species, Stachys byzantina, Cistus × hybridus, Lavandula angustifolia and Salvia officinalis. Despite evolving in a dry habitat, the four species tested proved remarkably resilient to flooding. All species survived 17 days flooding in winter, with Stachys and Lavandula also surviving equivalent flooding duration during summer. Photosynthesis and biomass production, however, were strongly inhibited by flooding although the most tolerant species, Stachys quickly restored its photosynthetic capacity on termination of flooding. Overall, survival rates were comparable to previous studies on other terrestrial (including wetland) species. Subsequent experiments using Salvia (a species we identified as ‘intermediate’ in tolerance) clearly demonstrated adaptations to waterlogging, e.g. acclimation against anoxia when pre-treated with hypoxia. Despite anecdotal information to the contrary, we found no evidence to suggest that these xerophytic species are particularly intolerant of waterlogging. Other climatic and biotic factors may restrict the viability and distribution of these species within the urban conurbations of north-west Europe, but we believe increased incidence of flooding per se should not preclude their consideration.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using identical observed meteorology for lateral boundary conditions, the Regional Atmospheric Modeling System was integrated for July-August 1973 for south Florida. Three experiments were performed-one using the observed 1973 landscape, another the 1993 landscape, and the third the 1900 landscape, when the region was close to its natural state. Over the 2-month period, there was a 9% decrease in rainfall averaged over south Florida with the 1973 landscape and an 11% decrease with the 1993 landscape, as compared with the model results when the 1900 landscape is used. The limited available observations of trends in summer rainfall over this region are consistent with these trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing models to predict the effects of social and economic change on agricultural landscapes is an important challenge. Model development often involves making decisions about which aspects of the system require detailed description and which are reasonably insensitive to the assumptions. However, important components of the system are often left out because parameter estimates are unavailable. In particular, measurements of the relative influence of different objectives, such as risk, environmental management, on farmer decision making, have proven difficult to quantify. We describe a model that can make predictions of land use on the basis of profit alone or with the inclusion of explicit additional objectives. Importantly, our model is specifically designed to use parameter estimates for additional objectives obtained via farmer interviews. By statistically comparing the outputs of this model with a large farm-level land-use data set, we show that cropping patterns in the United Kingdom contain a significant contribution from farmer’s preference for objectives other than profit. In particular, we found that risk aversion had an effect on the accuracy of model predictions, whereas preference for a particular number of crops grown was less important. While nonprofit objectives have frequently been identified as factors in farmers’ decision making, our results take this analysis further by demonstrating the relationship between these preferences and actual cropping patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest-control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta-analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non-crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non-crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non-woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance-richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non-crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the ‘specialist-generalist’ or ‘cultural difference’ mechanism. If complexity has stronger effects on richness than abundance, it might have stronger effects on the stability than the magnitude of these arthropod-mediated ecosystem services. We conclude that some pollinators and natural enemies seem to have compatible responses to complexity, and it might be possible to manage agroecosystems for the benefit of both. However, too few studies have compared the two, and so we cannot yet conclude that there are no negative interactions between pollinators and natural enemies, and no trade-offs between pollination and pest-control services. Therefore, we suggest a framework for future research to bridge these gaps in our knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multiproxy study of land use by a pre-Columbian earth mounds culture in the Bolivian Amazon. The Monumental Mounds Region (MMR) is an archaeological sub-region characterized by hundreds of pre-Columbian habitation mounds associated with a complex network of canals and causeways, and situated in the forest–savanna mosaic of the Llanos de Moxos. Pollen, phytolith, and charcoal analyses were performed on a sediment core from a large lake (14 km2), Laguna San José (14°56.97′S, 64°29.70′W).We found evidence of high levels of anthropogenic burning from AD 400 to AD 1280, corroborating dated occupation layers in two nearby excavated habitation mounds. The charcoal decline pre-dates the arrival of Europeans by at least 100 yr, and challenges the notion that the mounds culture declined because of European colonization. We show that the surrounding savanna soils were sufficiently fertile to support crops, and the presence of maize throughout the record shows that the area was continuously cultivated despite land-use change at the end of the earthmounds culture. We suggest that burning was largely confined to the savannas, rather than forests, and that pre-Columbian deforestation was localized to the vicinity of individual habitation mounds, whereas the inter-mound areas remained largely forested.