987 resultados para Land surface model
Resumo:
Commuting consists in the fact that an important fraction of workers in developed countries do not reside close to their workplaces but at long distances from them, so they have to travel to their jobs and then back home daily. Although most workers hold a job in the same municipality where they live or in a neighbouring one, an important fraction of workers face long daily trips to get to their workplace and then back home.Even if we divide Catalonia (Spain) in small aggregations of municipalities, trying to make them as close to local labour markets as possible, we will find out that some of them have a positive commuting balance, attracting many workers from other areas and providing local jobs for almost all their resident workers. On the other side, other zones seem to be mostly residential, so an important fraction of their resident workers hold jobs in different local labour markets. Which variables influence an area¿s role as an attraction pole or a residential zone? In previous papers (Artís et al, 1998a, 2000; Romaní, 1999) we have brought out the main individual variables that influence commuting by analysing a sample of Catalan workers and their commuting decisions. In this paper we perform an analysis of the territorial variables that influence commuting, using data for aggregate commuting flows in Catalonia from the 1991 and 1996 Spanish Population Censuses.These variables influence commuting in two different ways: a zone with a dense, welldeveloped economical structure will have a high density of jobs. Work demand cannot be fulfilled with resident workers, so it spills over local boundaries. On the other side, this economical activity has a series of side-effects like pollution, congestion or high land prices which make these areas less desirable to live in. Workers who can afford it may prefer to live in less populated, less congested zones, where they can find cheaper land, larger homes and a better quality of life. The penalty of this decision is an increased commuting time. Our aim in this paper is to highlight the influence of local economical structure and amenities endowment in the workplace-residence location decision. A place-to-place logit commuting models is estimated for 1991 and 1996 in order to find the economical and amenities variables with higher influence in commuting decisions. From these models, we can outline a first approximation to the evolution of these variables in the 1986-1996 period. Data have been obtained from aggregate flow travel-matrix from the 1986, 1991 and 1996 Spanish Population Censuses
Resumo:
An ab initio study of the adsorption processes on NOx compounds on (1 1 0) SnO2 surface is presented with the aim of providing theoretical hints for the development of improved NOx gas sensors. From first principles calculations (DFT¿GGA approximation), the most relevant NO and NO2 adsorption processes are analyzed by means of the estimation of their adsorption energies. The resulting values and the developed model are also corroborated with experimental desorption temperatures for NO and NO2, allowing us to explain the temperature-programmed desorption experiments. The interference of the SO2 poisoning agent on the studied processes is discussed and the adsorption site blocking consequences on sensing response are analyzed.
Resumo:
The variation in the emission of Si+ ions from ion-beam-induced oxidized silicon surfaces has been studied. The stoichiometry and the electronic structure of the altered layer has been characterized using x-ray photoelectron spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates the strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30 °. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the corresponding valence-band structures also differ among each other. A comparison between experimental measurements and theoretically calculated Si and SiO2 valence bands indicates that the valence bands for the altered layers are formed by a combination of those two. Since Si-Si bonds are present in the suboxide molecules, the top of the respective new valence bands are formed by the corresponding 3p-3p Si-like subbands, which extend up to the Si Fermi level. The changes in stoichiometry and electronic structure have been correlated with the emission of Si+ ions from these surfaces. From the results a general model for the Si+ ion emission is proposed combining the resonant tunneling and local-bond-breaking models.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
[cat] En aquest treball presentem un model per explicar el procés d’especialització vitícola assolit als municipis de la província de Barcelona, a mitjans del s. XIX,que cerca entendre com va sorgir històricament un avantatge comparatiu fruit d’un procés que esdevindria un dels punts de partida del procés d’industrialització a Catalunya. Els resultats confirmen els papers jugats pel impuls “Boserupià” de la població en un context d’intensificació de l’ús de la terra, i d’un impuls del mercat “Smithià” en un context d’expansió de la demanda per part de les economies atlàntiques. També es posa de manifest la importància de les dotacions agro-ecològiques i les condicions socioinstitucionals relacionades amb la desigualtat d’ingrés. La difusió de la vinya donà com a resultat unes comunitats rurals menys desiguals fins al 1820, tot i que aquesta desigualtat augmentà de nou a partir d'aleshores.
Resumo:
Commuting consists in the fact that an important fraction of workers in developed countries do not reside close to their workplaces but at long distances from them, so they have to travel to their jobs and then back home daily. Although most workers hold a job in the same municipality where they live or in a neighbouring one, an important fraction of workers face long daily trips to get to their workplace and then back home.Even if we divide Catalonia (Spain) in small aggregations of municipalities, trying to make them as close to local labour markets as possible, we will find out that some of them have a positive commuting balance, attracting many workers from other areas and providing local jobs for almost all their resident workers. On the other side, other zones seem to be mostly residential, so an important fraction of their resident workers hold jobs in different local labour markets. Which variables influence an area¿s role as an attraction pole or a residential zone? In previous papers (Artís et al, 1998a, 2000; Romaní, 1999) we have brought out the main individual variables that influence commuting by analysing a sample of Catalan workers and their commuting decisions. In this paper we perform an analysis of the territorial variables that influence commuting, using data for aggregate commuting flows in Catalonia from the 1991 and 1996 Spanish Population Censuses.These variables influence commuting in two different ways: a zone with a dense, welldeveloped economical structure will have a high density of jobs. Work demand cannot be fulfilled with resident workers, so it spills over local boundaries. On the other side, this economical activity has a series of side-effects like pollution, congestion or high land prices which make these areas less desirable to live in. Workers who can afford it may prefer to live in less populated, less congested zones, where they can find cheaper land, larger homes and a better quality of life. The penalty of this decision is an increased commuting time. Our aim in this paper is to highlight the influence of local economical structure and amenities endowment in the workplace-residence location decision. A place-to-place logit commuting models is estimated for 1991 and 1996 in order to find the economical and amenities variables with higher influence in commuting decisions. From these models, we can outline a first approximation to the evolution of these variables in the 1986-1996 period. Data have been obtained from aggregate flow travel-matrix from the 1986, 1991 and 1996 Spanish Population Censuses
Resumo:
Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS) can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively), in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.
Resumo:
A surface dielectric function of a semi-infinite plane-bounded metal is defined in the spirit of the plasmon-pole dielectric function of the bulk. It is modeled in such a way that the surface-plasmon dispersion relation is recovered for small momentum transfer. This function is employed to compute the image potential at all distances outside the surface. Interaction with bulk modes is neglected for simplicity and clarity. The interaction of a massive point charge with a metal surface is also considered in the context of a boson model for surface-plasmon excitation. We present a new definition of the image potential for this case.
Resumo:
The average multipole surface-plasmon energy for simple metals, as well as that of ordinary surface and bulk plasmons, is obtained using energy-weighted moments of the electronic response to sufficiently general external perturbations. A local approximation of exchange and correlation effects is used within a jellium model. Band-structure effects are incorporated through an effective electronic mass. Taking advantage of the transparency of the method, we analyze under what circumstances such modes might be observable. It is shown that due to an interplay between Coulomb and kinetic energies, the multipole modes become unobservable for increasing values of the transferred momentum (q) parallel to the surface. The value of q at which the multipole mode becomes unobservable is much smaller than the cutoff value for Landau damping. The effect of the electronic surface diffuseness is also analyzed. We compare our results with previous density-functional calculations and with recent experimental data for Na, K, and Cs.
Resumo:
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Microbial biomass and soil chemical properties under different land use systems in northeastern Pará
Resumo:
The increase in agricultural production in the Brazilian Amazon region is mostly a result of the agricultural frontier expansion, into areas previously influenced by humans or of native vegetation. At the same time, burning is still used to clear areas in small-scale agricultural systems, leading to a loss of the soil productive capacity shortly after, forcing the opening of new areas. This study had the objective of evaluating the effect of soil preparation methods that involve plant residue shredding, left on the surface or incorporated to the soil, with or without chemical fertilization, on the soil chemical and biological properties. The experiment was conducted in 1995, in an experimental field of Yellow Latosol (Oxisol) of the Embrapa Amazônia Oriental, northeastern Pará (Brazil). The experiment was arranged in randomized blocks, in a 2x6 factorial design, with two management systems and six treatments evaluated twice. The management systems consisted of rice (Oriza sativa), followed by cowpea (Vigna unguiculata) with manioc (Manihot esculenta). In the first system the crops were planted in two consecutive cycles, followed by a three-year fallow period (natural regrowth); the second system consisted of one cultivation cycle and was left fallow for three years. The following treatments were applied to the secondary forest vegetation: slash and burn, fertilized with NPK (Q+NPK); slash and burn, without fertilizer NPK (Q-NPK); cutting and shredding, leaving the residues on the soil surface, fertilized with NPK (C+NPK); cutting and shredding, leaving residues on the soil surface, without fertilizer (C-NPK); cutting and shredding, with residue incorporation and fertilized with NPK (I+NPK); cutting and shredding, with residue incorporation and without NPK fertilizer (I-NPK). The soil was sampled in the rainier season (April 2006) and in the drier season (September 2006), in the 0-0.1 m layer. From each plot, 10 simple samples were collected in order to generate a composite sample. In the more intensive management system the contents of microbial C (Cmic) and microbial N (Nmic) were higher, while the C (Corg) level was higher in the less intensive system. The treatments with highest Cmic and Nmic levels were those with cutting, shredding and distribution of biomass on the soil surface. Under both management systems, the chemical characteristics were in ranges that classify the soil as little fertile, although P and K (in the rainy season) were higher in the less intensive management system.
Resumo:
A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. Behavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.