809 resultados para LaTeX
Resumo:
Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.
Resumo:
Cell adhesion is a fundamentally important process which has been implicated in morphogenesis, metastasis and wound healing. Fibronectin (Fn), a large glycoprotein present in body fluids, the extracellular matrix, and on the cell surface, mediates adhesion of fibroblastic cells. To study the interaction of Fn with Chinese Hamster Cell (CHO) cell membranes, latex beads coated with H('3)-Fn (Fn-beads) were used as surface probes. Binding of Fn-beads was independent of temperature, divalent cations, and metabolic activity. Identification of fibronectin-receptors has been problematical. To study Fn binding components, Fn-beads were pre-incubated with purified glycosaminoglycans (GAGs) and glycolipids. Among the GAGs tested, heparin and heparan sulfate blocked bead binding. Only sialylated glycolipids, GT(,1) and GD(,1) were inhibitory; however, neuraminidase treatment of cells had no effect. It was further shown that Fn-bead binding could be blocked by pre-treating cells with papain. Furthermore, papain digestion releases cellular material which blocks Fn-bead-cell binding. Beads coated with a fragment of Fn which binds to cells but not heparin (F105) were also blocked by soluble papain digests. It was observed that the ability of F105-beads to bind to CHO cells was dependent on surface charge as F105 on uncharged beads did not bind to cells; whereas, F105 on positive or negative beads displayed cell binding activity. The active component in the papain digests was apparently macromolecular (i.e. non-dialysable) and heat stable (i.e. 100(DEGREES)C for 15 min.). This suggested the inhibitory factor is more likely a glycopeptide, rather than a GAG or glycolipid. The findings of this research can be summarized as follows: (1) the expression of cell binding of Fn and Fn fragments can be modulated by the chemical nature of the surface used for adsorption; (2) factors can be released by proteolytic digestion which block Fn and Fn-fragment bead binding; and (3) since bead binding can be done under conditions which reflect initial Fn-cell interaction, it seems likely that the component(s) identified in this way may play a direct role in the recognition phases of cell adhesion to Fn. ^
Resumo:
Cell adhesion is an intricate process involving adhesion promoting ligands such as laminin and fibronectin, surface receptors for these ligands and a complex interplay of metabolic and cytoskeletal events (Geiger, BBA 737:305, 1983). Although considerable effort has been directed towards studying adhesion molecules such as fibronectin (Fn), very little is known about the mechanisms regulating the complex process of adhesion.^ I chose to use a CHO adhesion variant clone called AD('v)F11 as a tool to study the various steps which may be involved in adhesion. AD('v)F11 cells unlike wild type (WT), do not adhere to Fn-coated substrata, but will adhere to substrata coated with other extracellular components (Harper and Juliano, J Cell Biol. 91:647, 1981). I have found that although AD('v)F11 cells can bind Fn-coated latex beads to the same extent as WT cells, AD('v)F11 cells also differed from WT cells in that they did not aggregate in the presence of Fn-beads nor internalize Fn-beads. The defect in bead induced cell aggregation and internalization seem to be specific to Fn since lectin coated beads could aggregate AD('v)F11 cells as well as WT cells, and AD('v)F11 cells can also readily internalize lectins. These observations suggest that the defect associated with AD('v)F11 cells is distal to the initial binding to Fn to its cell surface receptor. To further investigate the biochemical defect associated with AD('v)F11 cells, a panel of compounds were examined for their ability to correct the non-adhesive phenotype of AD('v)F11 cells. Among the compounds tested, only those known to increase intracellular cAMP levels were found to be effective in correcting the adhesion defect of F11CA11 cells, a subclone of AD('v)F11 cells.^ Since cAMP effects in eukaryotic cells are mediated through phosphorylation events by the cAMP-dependent protein kinase (cAdPK) system, the phosphorylation pattern and cAdPK system of the F11CA11 cells were analyzed. Comparison between the phosphorylation pattern of intact untreated F11CA11 and WT cells, revealed the presence of a 50 kd phosphoprotein(s) in WT cells but not in F11CA11 cells. Results presented in this dissertation strongly indicate that the adhesion defect in F11CA11 is associated to an altered type I cAdPK that can be corrected by raising intracellular cAMP levels. (Abstract shortened with permission of author.) ^
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^
Resumo:
The 21st Annual Biochemical Engineering Symposium was held at Colorado State University on April 20, 1991. The primary goals of this symposium series are to provide an opportunity for students to present and publish their research work and to promote informal discussions on biochemical engineering research. Contents High Density Fed-Batch Cultivation and Energy Metabolism of Bacillus thuringtensis; W.-M. Liu, V. Bihari, M. Starzak, and R.K. Bajpai Influences of Medium Composition and Cultivation Conditions on Recombinant Protein Production by Bacillus subtilis; K. Park, P.M. Linzmaier, and K.F. Reardon Characterization of a Foreign Gene Expression in a Recombinant T7 Expression System Infected with λ Phages; F. Miao and D.S. Kompala Simulation of an Enzymatic Membrane System with Forced Periodic Supply of Substrate; N. Nakaiwa, M. Yashima, L.T. Fan, and T. Ohmori Batch Extraction of Dilut Acids in a Hollow Fiber Module; D.G. O'Brien and C.E. Glatz Evaluation of a New Electrophoretic Device for Protein Purification; M.-J. Juang and R.G. Harrison Crossflow Microfiltration and Membrane Fouling for Yeast Cell Suspension; S. Redkar and R. Davis Interaction of MBP-β-Galactosidase Fusion Protein with Starch; L. Taladriz and Z. Nikolov Predicting the Solubility of Recombinant Proteins in Escherichia coli; D.L. Wilkinson and R.G. Harrison Evolution of a Phase-Separated, Gravity-Independent Bioractor; P.E. Villeneuve and E.H. Dunlop A Strategy for the Decontamination of Soils Containing Elevated Levels of PCP; S. Ghoshal, S. K. Banelji, and RK. Bajpai Practical Considerations for Implementation of a Field Scale In-Situ Bioremediation Project; J.P. McDonald, CA Baldwin, and L.E. Erickson Parametric Sensitivity Studies of Rhizopus oligosporus Solid Substrate Fermentation; J. Sargantanis, M.N. Karim, and V.G. Murphy, and RP. Tengerdy Production of Acetyl-Xylan Esterase from Aspergillus niger; M.R Samara and J.C. Linden Biological and Latex Particle Partitioning in Aqueous Two-Phase Systems; D.T.L. Hawker, RH. Davis, P.W. Todd, and R Lawson Novel Bioreactor /Separator for Microbial Desulfurization of Coal; H. Gecol, RH. Davis, and J .R Mattoon Effect of Plants and Trees on the Fate, Transport and Biodegradation of Contaminants in the Soil and Ground Water; W. Huang, E. Lee, J.F. Shimp, L.C. Davis, L.E. Erickson, and J.C. Tracy Sound Production by Interfacial Effects in Airlift Reactors; J. Hua, T.-Y. Yiin, LA Glasgow, and L.E. Erickson Soy Yogurt Fermentation of Rapid Hydration Hydrothermal Cooked Soy Milk; P. Tuitemwong, L.E. Erickson, and D.Y.C. Fung Influence of Carbon Source on Pentachlorophenol Degradation by Phanerochaete chrysosportum in Soil; C.-Y.M. Hsieh, RK. Bajpai, and S.K. Banerji Cellular Responses of Insect Cells Spodopiera frugiperda -9 to Hydrodynamic Stresses; P.L.-H. Yeh and RK. Bajpa1 A Mathematical Model for Ripening of Cheddar Cheese; J. Kim, M. Starzak, G.W. Preckshoi, and R.K. Bajpai
Resumo:
This talk illustrates how results from various Stata commands can be processed efficiently for inclusion in customized reports. A two-step procedure is proposed in which results are gathered and archived in the first step and then tabulated in the second step. Such an approach disentangles the tasks of computing results (which may take long) and preparing results for inclusion in presentations, papers, and reports (which you may have to do over and over). Examples using results from model estimation commands and various other Stata commands such as tabulate, summarize, or correlate are presented. Users will also be shown how to dynamically link results into word processors or into LaTeX documents.
Resumo:
This tutorial will show how results from various Stata commands can be processed efficiently for inclusion in customized reports. A two-step procedure is proposed in which results are gathered and archived in the first step and then tabulated in the second step. Such an approach disentangles the tasks of computing results (which may take long) and preparing results for inclusion in presentations, papers, and reports (which you may have to do over and over). Examples using results from model estimation commands and also various other Stata commands such as tabulate, summarize, or correlate are presented. Furthermore, this tutorial shows how to dynamically link results into word processors or into LaTeX documents.
Resumo:
Postestimation processing and formatting of regression estimates for input into document tables are tasks that many of us have to do. However, processing results by hand can be laborious, and is vulnerable to error. There are therefore many benefits to automation of these tasks while at the same time retaining user flexibility in terms of output format. The estout package meets these needs. estout assembles a table of coefficients, "significance stars", summary statistics, standard errors, t/z statistics, p-values, confidence intervals, and other statistics calculated for up to twenty models previously fitted and stored by estimates store. It then writes the table to the Stata log and/or to a text file. The estimates are formatted optionally in several styles: html, LaTeX, or tab-delimited (for input into MS Excel or Word). There are a large number of options regarding which output is formatted and how. This talk will take users through a range of examples, from relatively basic simple applications to complex ones.
Resumo:
En muchos espacios naturales protegidos, el flujo peatonal de visitantes se concentra en determinados sectores del área de uso público, sobre todo en la proximidad de las principales vías de acceso (carreteras, núcleos de población...) y en un reducido número de sendas y caminos peatonales que comunican los elementos más visitados. Es el caso del camino hacia la Cola de Caballo en el parque nacional de Ordesa y Monte Perdido; el camino a la ermita de San Frutos en el parque natural de las Hoces del río Duratón; o la senda que comunica el Salto del Gitano con el castillo y la ermita en el parque nacional de Monfragüe, por citar algunos ejemplos. Esta concentración de actividades de senderismo produce en determinados tramos de estos caminos y sendas (zonas con suelos arenosos o limosos y altas pendientes) una erosión hídrica acelerada por el efecto físico del pisoteo, compactación y continua fricción. En ocasiones se llegan a formar regueros, pequeños barrancos y se pierden grandes cantidades de suelos fértiles, que además fosilizan y aterran aquéllas zonas donde va a parar la escorrentía, produciendo importantes impactos en estos espacios singulares. Existen numerosos ejemplos de ingentes partidas económicas que los gestores de estos espacios protegidos tienen que destinar a la reparación y recuperación de estas sendas y su entorno. Para ayudar a los gestores es básico disponer de metodologías y herramientas que cuantifiquen esta erosión hídrica (en mm/año) delimitando qué tramos de estas sendas y caminos tienen los mayores problemas erosivos, para así determinar cuáles deben ser prioritarios en su corrección, o qué acciones de restricción de paso o determinación de capacidad de acogida, son necesarias adoptar. Para esta cuantificación son muy útiles, desde hace décadas, las técnicas dendrogeomorfológicas aplicadas a las raíces de árboles que han quedado expuestas a la intemperie por la erosión acelerada en las sendas. En este trabajo se propone una nueva metodología de medición del suelo denudado en relación con la raíz, basado en el estudio microtopográfico de la superficie utilizando moldes y réplicas de alta resolución realizados en diferentes tipos de siliconas, latex y escayolas, y su posterior escaneo tridimensional. La zona piloto donde se ha ensayado esta metodología son los senderos y caminos del parque nacional de Monfragüe (Cáceres), que presentan raíces expuestas debido a la intensa erosión hídrica acelerada como consecuencia de la elevada concentración de visitantes. Los estudios son financiados por el proyecto de investigación IDEA-GesPPNN, del OAPN (MAGRAMA).
Resumo:
Uno de los temas más importantes dentro del debate contemporáneo, es el que se refiere a la sostenibilidad a largo plazo de la sociedad tal y como la entendemos hoy. El ser humano está recuperando la sensibilidad perdida que le concebía como una pieza más dentro del ciclo natural de la vida. Por fin hemos entendido que no podemos ser auto suficientes e independientes del entorno natural que nos rodea. Más allá del respeto y del cuidado, está abierta la puerta del conocimiento infinito que nos brinda la naturaleza a todos los niveles y a todas las escalas. Dentro de la disciplina arquitectónica han existido ejemplos como Antoni Gaudí o Frei Otto que han referenciado su obra en el mundo Natural, encontrando en él las estrategias y bases para el diseño arquitectónico. Sin embargo han sido una minoría dentro del enorme elenco de arquitectos defensores del ángulo recto. En las últimas décadas, la tendencia está cambiando. No nos referimos tanto a la sensibilidad creciente por conseguir una mayor eficiencia energética que ha llevado a una puesta en valor de la arquitectura vernácula, trasladando su sabiduría a las estrategias bioclimáticas. Nos referimos a un caso específico dentro del amplio abanico de formas arquitectónicas que han aparecido gracias a la incorporación de las herramientas computacionales en el diseño y la producción. Las arquitecturas que nos interesan son las que aprovechan estas técnicas para analizar e interpretar las estrategias complejas y altamente eficientes que encontramos en la naturaleza, y trasladarlas a la disciplina arquitectónica. Esta tendencia que se enmarca dentro de la Biomímesis o Biomimética es conocida con el nombre de Bioarquitectura. La presente tesis trata de morfología y sobre todo de morfogénesis. El término morfología se refiere al estudio de una forma concreta que nos permite entender un caso específico, nuestro foco de atención se centra sin embargo en la morfogénesis, es decir, en el estudio de los procesos de generación de esas formas, para poder reproducir patrones y generar abanicos de casos adaptables y reconfigurables. El hecho de estudiar la forma no quiere decir que ésta sea una tesis “formalista” con la connotación peyorativa y gestual que se le suele atribuir a este término. La investigación concibe el concepto de forma como lo hace el mundo natural: forma como síntesis de eficiencia. No hay ninguna forma natural gratuita, que no cumpla una función determinada y que no se desarrolle con el mínimo material y gaste la mínima energía posible. Este afán por encontrar la “forma eficaz” es lo que nos hace traspasar la frontera de la arquitectura formalista. El camino de investigación morfológica se traza, como el título de la tesis indica, siguiendo el hilo conductor concreto de los radiolarios. Estos microorganismos unicelulares poseen unos esqueletos tan complejos que para poder entender su morfología es necesario establecer un amplio recorrido que abarca más de 4.000 años de conocimiento humano. Desde el descubrimiento de los sólidos platónicos, poliedros que configuran muchas de las formas globales de estos esqueletos; hasta la aplicación de los algoritmos generativos, que permiten entender y reproducir los patrones de comportamiento que existen detrás de los sistemas de compactación y teselación irregular de los esqueletos radiolarios. La tesis no pretende plantear el problema desde un punto de vista biológico, ni paleontológico, aunque inevitablemente en el primer capítulo se realiza un análisis referenciado del estado del conocimiento científico actual. Sí se analizan en mayor profundidad cuestiones morfológicas y se tratan los diferentes posicionamientos desde los cuales estos microorganismos han servido de referencia en la disciplina arquitectónica. Además encontramos necesario analizar otros patrones naturales que comparten estrategias generativas con los esqueletos radiolarios. Como ya hemos apuntado, en el segundo capítulo se aborda un recorrido desde las geometrías más básicas a las más complejas, que tienen relación con las estrategias de generación de las formas detectadas en los microorganismos. A su vez, el análisis de estas geometrías se intercala con ejemplos de aplicaciones dentro de la arquitectura, el diseño y el arte. Finalizando con un cronograma que sintetiza y relaciona las tres vías de investigación abordadas: natural, geométrica y arquitectónica. Tras los dos capítulos centrales, el capítulo final recapitula las estrategias analizadas y aplica el conocimiento adquirido en la tesis, mediante la realización de diferentes prototipos que abarcan desde el dibujo analítico tradicional, a la fabricación digital y el diseño paramétrico, pasando por modelos analógicos de escayola, barras metálicas, resina, silicona, látex, etc. ABSTRACT One of the most important issues in the contemporary debate, is the one concerning the long-term sustainability of society as we understand it today. The human being is recovering the lost sensitivity that conceived us as part of the natural cycle of life. We have finally understood that we cannot be self-sufficient and independent of the natural environment which surrounds us. Beyond respect and care, we’ll find that the gateway to the infinite knowledge that nature provides us at all levels and at all scales is open. Within the architectural discipline, there have been remarkable examples such as Antoni Gaudí or Frei Otto who have inspired their work in the natural world. Both, found in nature the strategies and basis of their architectural designs. However, they have been a minority within the huge cast of architects defenders of the right angle. In recent decades, the trend is changing. We are not referring to the growing sensitivity in trying to achieve energy efficiency that has led to an enhancement of vernacular architecture, transferring its wisdom to bioclimatic strategies. We refer to a specific case within the wide range of architectural forms that have appeared thanks to the integration of computer tools in both design and production processes. We are interested in architectures that exploit these techniques to analyse and interpret the complex and highly efficient strategies found in nature, and shift them to the discipline of architecture. This trend, which is being implemented in the framework of the Biomimicry or biomimetics, is called Bioarchitecture. This thesis deals with morphology and more specifically with morphogenesis. Morphology is the study of a concrete form that allows us to understand a specific case. However, our focus is centered in morphogenesis or, in other words, the study of the processes of generation of these forms, in order to replicate patterns and generate a range of adaptable and reconfigurable cases. The fact of studying shapes does not mean that this is a “formalistic” thesis with the pejorative connotation that is often attributed to this term. This study conceives the concept of shape as Nature does: as a synthesis of efficiency. There is no meaningless form in nature. Furthermore, forms and shapes in nature play a particular role and are developed with minimum energetic consumption. This quest to find the efficient shape is what makes us go beyond formalistic architecture. The road of morphological investigation is traced, as the title of the thesis suggests, following the thread of radiolaria. These single-cell microorganisms possess very complex skeletons, so to be able to understand their morphology we must establish a wide spectrum which spans throughout more than 4.000 years of human knowledge. From the discovery of the platonic solids, polyhedrons which configure a huge range of global shapes of these skeletons, through the application of generative algorithms which allow us to understand and recreate the behavioral patterns behind the systems of compression and irregular tessellation of the radiolarian skeletons. The thesis does not pretend to lay out the problem from a biological, paleontological standpoint, although inevitably the first chapter is developed through an analysis in reference to the current state of the science. A deeper analysis of morphological aspects and different positionings is taken into account where these microorganisms have served as reference in the architectonic discipline. In addition we find necessary to analyse other natural patterns which share generative strategies with radiolarian skeletons. Aforementioned, in the second chapter an itinerary of the most basic geometries to the more complex ones is addressed. These are related, in this chapter, to the generative strategies of the shapes found in microorganisms. At the same time, the analysis of these geometries is placed among examples of applications inside the fields of architecture, design and the arts. To come to an end, a time chart synthesizes and relates the three investigation paths addressed: natural, geometrical and architectonic. After the two central chapters, the final chapter summarises the strategies analysed and applies the knowledge acquired throughout the thesis. This final chapter is shaped by the realization of different prototypes which range from traditional analytical drawings, to digital fabrication and parametric design, going through plaster analogical models, metal bars, resin, silicone, latex, etc.
Resumo:
Phagocytosis of shed photoreceptor rod outer segments (ROS) by the retinal pigment epithelium (RPE) is essential for retinal function. Here, we demonstrate that this process requires αvβ5 integrin, rather than αvβ3 integrin utilized by systemic macrophages. Although adult rat RPE expressed both αvβ3 and αvβ5 integrins, only αvβ3 was expressed at birth, when the retina is immature and phagocytosis is absent. Expression of αvβ5 was first detected in RPE at PN7 and reached adult levels at PN11, just before onset of phagocytic activity. Interestingly, αvβ5 localized in vivo to the apical plasma membrane, facing the photoreceptors, and to intracellular vesicles, whereas αvβ3 was expressed basolaterally. Using quantitative fluorimaging to assess in vitro uptake of fluorescent particles by human (ARPE-19) and rat (RPE-J) cell lines, αvβ5 function-blocking antibodies were shown to reduce phagocytosis by drastically decreasing (85%) binding of ROS but not of latex beads. In agreement with a role for αvβ5 in phagocytosis, immunofluorescence experiments demonstrated codistribution of αvβ5 integrin with internalized ROS. Control experiments showed that blocking αvβ3 function with antibodies did not inhibit ROS phagocytosis and that αvβ3 did not colocalize with phagocytosed ROS. Taken together, our results indicate that the RPE requires the integrin receptor αvβ5 specifically for the binding of ROS and that phagocytosis involves internalization of a ROS-αvβ5 complex. αvβ5 integrin does not participate in phagocytosis by other phagocytic cells and is the first of the RPE receptors involved in ROS phagocytosis that may be specific for this process.
Resumo:
The function of the small-Mr Ras-like GTPase Rap1 remains largely unknown, but this protein has been demonstrated to regulate cortical actin-based morphologic changes in Dictyostelium and the oxidative burst in mammalian neutrophils. To test whether Rap1 regulates phagocytosis, we biochemically analyzed cell lines that conditionally and modestly overexpressed wild-type [Rap1 WT(+)], constitutively active [Rap1 G12T(+)], and dominant negative [Rap1 S17N(+)] forms of D. discoideum Rap1. The rates of phagocytosis of bacteria and latex beads were significantly higher in Rap1 WT(+) and Rap1 G12T(+) cells and were reduced in Rap1 S17N(+) cells. The addition of inhibitors of protein kinase A, protein kinase G, protein tyrosine kinase, or phosphatidylinositide 3-kinase did not affect phagocytosis rates in wild-type cells. In contrast, the addition of U73122 (a phospholipase C inhibitor), calphostin C (a protein kinase C inhibitor), and BAPTA-AM (an intracellular Ca2+ chelator) reduced phagocytosis rates by 90, 50, and 65%, respectively, suggesting both arms of the phospholipase C signaling pathways played a role in this process. Other protein kinase C–specific inhibitors, such as chelerythrine and bisindolylmaleimide I, did not reduce phagocytosis rates in control cells, suggesting calphostin C was affecting phagocytosis by interfering with a protein containing a diacylglycerol-binding domain. The addition of calphostin C did not reduce phagocytosis rates in Rap1 G12T(+) cells, suggesting that the putative diacylglycerol-binding protein acted upstream in a signaling pathway with Rap1. Surprisingly, macropinocytosis was significantly reduced in Rap1 WT(+) and Rap1 G12T(+) cells compared with control cells. Together our results suggest that Rap1 and Ca2+ may act together to coordinate important early events regulating phagocytosis.
Resumo:
A physiological examination of mice harboring a null allele at the aryl hydrocarbon (Ah) locus revealed that the encoded aryl hydrocarbon receptor plays a role in the resolution of fetal vascular structures during development. Although the aryl hydrocarbon receptor is more commonly studied for its role in regulating xenobiotic metabolism and dioxin toxicity, a developmental role of this protein is supported by the observation that Ah null mice display smaller livers, reduced fecundity, and decreased body weights. Upon investigating the liver phenotype, we found that the decrease in liver size is directly related to a reduction in hepatocyte size. We also found that smaller hepatocyte size is the result of massive portosystemic shunting in null animals. Colloidal carbon uptake and microsphere perfusion studies indicated that 56% of portal blood flow bypasses the liver sinusoids. Latex corrosion casts and angiography demonstrated that shunting is consistent with the existence of a patent ductus venosus in adult animals. Importantly, fetal vascular structures were also observed at other sites. Intravital microscopy demonstrated an immature sinusoidal architecture in the liver and persistent hyaloid arteries in the eyes of adult Ah null mice, whereas corrosion casting experiments described aberrations in kidney vascular patterns.
Resumo:
We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (Jahraus et al., 1998). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (Defacque et al., 2000a), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.
Resumo:
The bacterial pathogen Shigella flexneri causes bacillary dysentery in humans by invading coloncytes. Upon contact with epithelial cells, S. flexneri elicits localized plasma membrane projections sustained by long actin filaments which engulf the microorganism. The products necessary for Shigella entry include three secretory proteins: IpaB, IpaC, and IpaD. Extracellular IpaB and IpaC associate in a soluble complex, the Ipa complex. We have immunopurified this Ipa complex on latex beads and found that they were efficiently internalized into HeLa cells. Like S. flexneri entry, uptake of the beads bearing the Ipa complex was associated with membrane projections and polymerization of actin at the site of cell-bead interaction and was dependent on small Rho GTPases. These results indicate that a secreted factor can promote S. flexneri entry into epithelial cells.