901 resultados para LOW-COST ADSORBENTS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless Sensor Networks have gained popularity due to their real time applications and low-cost nature. These networks provide solutions to scenarios that are critical, complicated and sensitive like military fields, habitat monitoring, and disaster management. The nodes in wireless sensor networks are highly resource constrained. Routing protocols are designed to make efficient utilization of the available resources in communicating a message from source to destination. In addition to the resource management, the trustworthiness of neighboring nodes or forwarding nodes and the energy level of the nodes to keep the network alive for longer duration is to be considered. This paper proposes a QoS Aware Trust Metric based Framework for Wireless Sensor Networks. The proposed framework safeguards a wireless sensor network from intruders by considering the trustworthiness of the forwarder node at every stage of multi-hop routing. Increases network lifetime by considering the energy level of the node, prevents the adversary from tracing the route from source to destination by providing path variation. The framework is built on NS2 Simulator. Experimental results show that the framework provides energy balance through establishment of trustworthy paths from the source to the destination. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production of H-2 via photocatalytic water splitting reaction has attracted a great attention as a clean and renewable energy for next generation. Despite tremendous efforts, the present challenge for materials scientist is to develop highly active photo catalysts for splitting of water at low cost. This article reports the synthesis of TiO2-reduced graphene oxide hybrid nanomaterials through ionothermal method using functionalized ionic liquid for the enhanced hydrogen generation via water splitting reaction. The structural and morphological properties of the samples were investigated by XFtD, Raman spectroscopy, TG-DTA, UV-vis spectroscopy and TEM. A substantial increase of H-2 evolution was observed for TiO2-reduced graphene oxide hybrid nanomaterials. This is due to the high migration efficiency of photo-induced electrons and the inhibition of charge carrier recombination due to the electronic interaction between TiO2 and reduced graphene oxide. i.e, reduced graphene oxide acts as an electron-acceptor which effectively hinders the electron hole pair recombination of TiO2. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tin (II) sulphide (SnS), a direct band gap semiconductor compound, has recently received great attention due to its unique properties. Because of low cost, absence of toxicity, and good abundance in nature, it is becoming a candidate for future multifunctional devices particularly for light conversion applications. Although the current efficiencies are low, the cost-per-Watt is becoming competitive. At room temperature, SnS exhibits stable low-symmetric, double-layered orthorhombic crystal structure, having a = 0.4329, b = 1.1192, and c = 0.3984nm as lattice parameters. These layer-structured materials are of interest in various device applications due to the arrangement of structural lattice with cations and anions. The layers of cations are separated only by van der Waals forces that provide intrinsically chemically inert surface without dangling bonds and surface density of states. As a result, there is no Fermi level pinning at the surface of the semiconductor. This fact leads to considerably high chemical and environmental stability. Further, the electrical and optical properties of SnS can be easily tailored by modifying the growth conditions or doping with suitable dopants without disturbing its crystal structure.In the last few decades, SnS has been synthesized and studied in the form of single-crystals and thin-films. Most of the SnS single-crystals have been synthesized by Bridgeman technique, whereas thin films have been developed using different physical as well as chemical deposition techniques. The synthesis or development of SnS structures in different forms including single-crystals and thin films, and their unique properties are reviewed here. The observed physical and chemical properties of SnS emphasize that this material could has novel applications in optoelectronics including solar cell devices, sensors, batteries, and also in biomedical sciences. These aspects are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Earth abundant tin sulfide (SnS) has attracted considerable attention as a possible absorber material for low-cost solar cells due to its favourable optoelectronic properties. Single crystals of SnS were grown by physical vapour deposition (PVD) technique. Microindentation studies were carried out on the cleaved surfaces of the crystals to understand their mechanical behaviour. Microhardness increased initially with the load, giving sharp maximum at 15 g. Quenching effect has increased the microhardness, while annealing reduced the microhardness of grown crystals. The hardness values of as-grown, annealed and quenched samples at 15 g load are computed to be 99.69, 44.52 and 106.29 kg/mm(2) respectively. The microhardness of PVD grown crystals are high compared to CdTe, a leading low-cost PV material. The as-grown faces are found to be fracture resistant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in the laboratory (major by-product of some second generation biorefinery processes); it is also an important chemical due to its myriad applications in pharmaceuticals and industry. In recent years, formic acid has been used as an important fuel either without reformation (in direct formic acid fuel cells, DFAFCs) or with reformation (as a potential chemical hydrogen storage material). Owing to the better efficiency of DFAFCs compared to several other PEMFCs and reversible hydrogen storage systems, formic acid could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future. This perspective is focused on recent developments in the use of formic acid as a reversible source for hydrogen storage. Recent developments in this direction will likely give access to a variety of low-cost and highly efficient rechargeable hydrogen fuel cells within the next few years by the use of suitable homogeneous metal complex/heterogeneous metal nanoparticle-based catalysts under ambient reaction conditions. The production of formic acid from atmospheric CO2 (a greenhouse gas) will decrease the CO2 content and may be helpful in reducing global warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of computationally efficient and accurate attitude rate estimation algorithm using low-cost commercially available star sensor arrays and processing unit for micro-satellite mission is presented. Our design reduces the computational load of least square (LS)-based rate estimation method while maintaining the same accuracy compared to other rate estimation approaches. Furthermore, rate estimation accuracy is improved by using recently developed fast and accurate second-order sliding mode observer (SOSMO) scheme. It also gives robust estimation in the presence of modeling uncertainties, unknown disturbances, and measurement noise. Simulation study shows that rate estimation accuracy achieved by our LS-based method is comparable with other methods for a typical commercially available star sensor array. The robustness analysis of SOSMO with respect to measurement noise is also presented in this paper. Simulation test bench for a practical scenario of satellite rate estimation uses moment-of-inertia variation and environmental disturbances affecting a typical micro-satellite at 500km circular orbit. Comparison studies of SOSMO with 1-SMO and pseudo-linear Kalman filter show that satisfactory estimation accuracy is achieved by SOSMO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a Social Group' of networked nodes, seeking a universe' of segments. Each node has a subset of the universe and access to an expensive resource for downloading data. Nodes can also acquire the universe by exchanging copies of segments among themselves, at low cost, using inter-node links. While exchanges over inter-node links ensure minimum cost, some nodes in the group try to exploit the system. We term such nodes as non-reciprocating nodes' and prohibit such behavior by proposing the give-and-take' criterion, where exchange is allowed if each node has segments unavailable with the other. Under this criterion, we consider the problem of maximizing the number of nodes with the universe at the end of local exchanges. First, we present a randomized algorithm that is shown to be optimal in the asymptotic regime. Then, we present greedy links algorithm, which performs well for most of the scenarios and yields an optimal result when the number of nodes is four. The polygon algorithm is proposed, which yields an optimal result when each of the nodes has a unique segment. After presenting some intuitive algorithms (e.g., greedy incremental algorithm and rarest first algorithm), we compare the performances of all proposed algorithms with the optimal. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primary and secondary zinc-air batteries based on ceramic, stable, one dimensional titanium carbonitride (TiCN) nanostructures are reported. The optimized titanium carbonitride composition by density functional theory reveals their good activity towards the oxygen reduction reaction (ORR). Electrochemical measurements show their superior performance for the ORR in alkaline media coupled with favourable kinetics. The nanostructured TiCN lends itself amenable to be used as an air cathode material in primary and rechargeable zinc-air batteries. The battery performance and cyclability are found to be good. Further, we have demonstrated a gel-based electrolyte for rechargeable zinc-air batteries based on a TiCN cathode under ambient, atmospheric conditions without any oxygen supply from a cylinder. The present cell can work at current densities of 10-20 mA cm(2) (app. 10 000 mA g(-1) of TiCN) for several hours (63 h in the case of 10 mA cm(-2)) with a charge retention of 98%. The low cost, noble metal-free, mechanically stable and corrosion resistant TiCN is a very good alternative to Pt for metal-air battery chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite intensive research on optimizing the methods for depositing carbon encapsulated ferromagnetic nanoparticles, the effect of the carbon cages remains unclear. In the present work, the effect of the graphitic cages on the magnetization of the ferromagnetic core has been studied by comparing the magnetic properties of pure and carbon encapsulated Ni particles of the same size. The carbon encapsulated Ni particles were formed using an electric arc discharge in de-ionized water between a solid graphite cathode and an anode consisting of Ni and C in a mass ratio of Ni:C = 7:3. This method is shown to have potential for low cost production of carbon encapsulated Ni nanoparticle samples with narrow particle size distributions. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis were used to study the crystallography, morphology, and size distribution of the encapsulated and pure Ni nanoparticle samples. The availability of encapsulated particles with various sizes allowed us to elucidate the role of carbon cages in size-dependent properties. Our data suggest that even though encapsulation is beneficial for protection against hostile chemical environments and for avoiding low proximity phenomena, it suppresses the saturation magnetization of the Ni cores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology offer the potential for low cost deployment and maintenance compared with conventional wired sensor networks, enabling effective and efficient condition monitoring of aged civil engineering infrastructure. We will address wireless propagation for a below to above ground scenario where one of the wireless nodes is located in a below ground fire hydrant chamber to permit monitoring of the local water distribution network. Frequency Diversity (FD) is one method that can be used to combat the damaging effects of multipath fading and so improve the reliability of radio links. However, no quantitative investigation concerning the potential performance gains from the use of FD at 2.4GHz is available for the outlined scenario. In this paper, we try to answer this question by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor nodes. These measurement results are also compared with those obtained from simulations that employ our Modified 2D Finite-Difference Time-Domain (FDTD) approach. ©2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microstructures and mechanical properties have been studied in aluminium containing a fine dispersion of alumina particles, deformed by cold-rolling to strains between 1.4 and 3.5. The microstructure was characterised by TEM. The deformation structures evolved very rapidly, forming a nanostructured material, with fine subgrains about 0.2 μm in diameter and a fraction of high-angle boundaries which was already high at a strain of 1.4, but continued to increase with rolling strain. The yield stress and ductility of the rolled materials were measured in tension, and properties were similar for all materials. Yield stress measurements were correlated with estimates made using microstructural models. The role of small particles in forming and stabilising the deformation structure is discussed. This nanostructured cold-deformed alloy has mechanical properties which are usefully enhanced at comparatively low cost. This gives it, and similar particle-strengthened alloys, good potential for commercial exploitation. © 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Cambridge University's Gordon Laboratory, in collaboration with Fibertech and the Defence Science and Technology Laboratory in the UK, has developed a novel melt spun fiber bore called 'Fibrecore', fabricated entirely from stainless steel with thin faceplates. Fibrecore is typically manufactured by 5mm-long and 70μm thick stainless steel fibers, produced by a melt overflow process. Its entirely metallic construction allows spot welding and tungsten inert gas welding without difficulty. Fibrecore exhibits different energy absorption mechanisms such as core cushioning, core-faceplate delamination, and plastic faceplate deformation, often in a concertina-like fashion. Its low-cost, high structural efficiency and good energy absorption characteristics make it attractive for a range of commercial and military applications. Such applications being evaluated include vehicle body panels, exhaust system noise reduction, low cost filters, and lightweight physical protection. In addition to these characteristics, Fibrecore exhibits properties such as corrosion protection, vibrational damping, and thermal insulation, which also extend its applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly porous ultralightweight cellular metal foams with open cells have attractive mechanical, thermal, acoustic and other properties and are currently being exploited for high-temperature applications (e.g. acoustic liners for combustion chambers). In such circumstances, thermal radiation in the metal foam becomes a significant mechanism of heat transfer. This paper presents results from experimental measurements on radiative transfer in Fe-Cr-Al-Y (a steel-based high-temperature alloy) foams having high porosity (95 per cent) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short-wavelength regime (less than 25 μm). While the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. The effective radiative conductivity of the metal foam is obtained by using the guarded hot-plate apparatus. With the porosity fixed, the effective radiative conductivity increases with increasing cell size and increasing temperature. © IMechE 2004.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents results from experimental measurements on radiative transfer in FeCrAlY (a steel based high temperature alloy) foams having high porosity (95%) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short wavelength regime (<25 μm). Whilst the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. An analytical model based on geometric optics laws, diffraction theory and metal foam morphology is developed to predict the radiative transfer, with cell size (or cell ligament diameter) and porosity identified as the two key parameters that dictate the foam radiative properties. Close agreement between the predicted effective foam conductivity due to radiation alone and that measured is observed. At fixed porosity, the radiative conductivity of the metal foam increases with increasing cell size and temperature. © 2004 Elsevier Ltd.All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Household-level water treatment and safe storage systems (HWTS) are simple, local, user-friendly, and low cost options to improve drinking water quality at the point of use. However, despite conclusive evidence of the health and economic benefits of HWTS, and promotion efforts in over 50 countries in the past 20 years, implementation outcomes have been slow, reaching only 5-10 million regular users. This study attempts to understand the barriers and drivers affecting HWTS implementation. Using a case study example of a biosand filter program in southern India, system dynamics modelling is shown to be a useful tool to map the inter-relationships of different critical factors and to understand the dissemination dynamics. It is found that the co-existence of expanding quickly and achieving financial sustainability appears to be difficult to achieve under the current program structure.