986 resultados para Kueishantao hydrothermal field
Resumo:
Emergency relief centres provide financial, housing, food and other types of support to families and individuals who experience financial hardship. These centres are non-profit, often government supported organizations that rely on the help of their volunteers and social workers. This paper reports on our preliminary findings from field visits to one such centre called Communify, in the inner west of Brisbane, Australia. Communify runs an emergency food relief facility for people who find themselves in a crisis or temporarily unable to afford groceries. Over a period of five months, we did several field visits to the centre and carried out 21 short in-situ interviews, with a mix of Communify clients and volunteers. Our results shed light on people’s experiences of financial hardship and their interactions with the emergency relief centre. In particular, issues related to their perceived values and stigmas associated with their experiences are highlighted in our findings. We identify opportunities for design that can empower people struggling with financial hardship.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.
Resumo:
Direct precipitation of fine powders of lead zirconate titanate (PZT) in the complete range of solid solution, is investigated under hydrothermal conditions, starting from lead oxide and titania/zirconia mixed gels. The perovskite phase is formed in the temperature range of 165 – 340°C. Sequence of the hydrothermal reactions is studied by identifying the intermediate phases. The initial formation of PbO: TiO2 solid solution is followed by the reaction of the same with the remaining mixed gels giving rise to X-ray amorphous PZT phase. Further, through crystallite growth, the X-ray crystalline PZT is formed. This method can be extended for the preparation of PLZT powder as well. The resulting powders are sinterable to high density ceramics.
Resumo:
Partial discharges in a gaseous interface due to the presence of a dielectric between two uniform field electrodes in air at different pressures from 0.5 to 685 mm Hg have been studied and measurements of inception and extinction voltages, number of pulses and their charge magnitudes at inception are reported. It has been observed that the extinction voltage can be as low as 70% of the inception voltage suggesting that the working voltage in such cases should be about 30% lower than the observed inception voltage. Small magnitude pulses are found to be more in number than large magnitude pulses. The charge is found to be pressure dependent. The results have been explained on the basis of an equivalent circuit consisting of resistance and capacitance in which the discharge gap functions as a switch.
Resumo:
We investigate the evolution of rotation period and spindown age of a pulsar whose surface magnetic field undergoes a phase of growth. Application of these results to the Crab pulsar strongly indicates that its parameters cannot be accounted for by the field growth theories.
Resumo:
Measurement of the relation between polarisation and electric field for ferroelectric trissarcosine calcium chloride (TSCC) was made in the pressure range up to 6 kbar. The pressure dependence of the spontaneous polarisation and the coercive field were obtained, and the existence of a new pressure-induced phase and the paraelectric- ferroelectric-new phase triple point were found.
Resumo:
Mapping and evaluating a student's progress on placement is a core element of social work education but there has been scant attention to indicate how to effectively create and assess student learning and performance. This paper outlines a project undertaken by the Combined Schools of Social Work to develop a common learning and assessment tool that is being used by all social work schools in Victoria. The paper describes how the Common Assessment Tool (CAT) was developed, drawing on the Australian Association of Social Work Practice Standards, leading to seven key learning areas that form the basis of the assessment of a student's readiness for practice. An evaluation of the usefulness of the CAT was completed by field educators, liaison staff, and students, which confirmed that the CAT was a useful framework for evaluating students' learning goals. The feedback also identified a number of problematic features that were addressed in a revised CAT and rating scale.
Resumo:
Social work students consistently identify their field placement as having the most impact on their learning. Despite this, research on learning activities used during placement and the impact on practice competency and social work identity is limited. This is the second paper from a research study exploring student experiences of learning on placement. Data were gathered from 263 social work students about 14 key learning activities they experienced during placement. The more regularly students engaged in learning activities with their social work supervisor, the more likely they were to report a sense of social work identity and feelings of practice competence. However, the regular use of learning activities varied widely between placements. Surprisingly, approximately half the students did not regularly have the opportunity to observe social work practice, have their practice observed, or to link social work theory and the Code of Ethics to their practice with their social work supervisor.
Resumo:
An expression is derived for the probability that the determinant of an n x n matrix over a finite field vanishes; from this it is deduced that for a fixed field this probability tends to 1 as n tends to.
Resumo:
A set of coils has been designed and constructed for generating magnetic field gradients for a Faraday magnetometer. We have obtained a gradient of magnitude -1 1 kOe m-' (8.75 x lo5 A m-') in an air gap of 42 mm for a current of 12 A passing through the coils.
Resumo:
Attempts to prepare BaSnO3 by the hydrothermal method starting from SnO2·xH2O gel and Ba (OH)2 solution in teflonlined autoclaves at 150–260°C invariably lead to the formation of a hydrated phase, BaSn(OH)6·3H2O. On heating in air or on releasing the pressure Image at ≈260°C, BaSN (OH)6·3H2O converts to BaSnO3 fine powder which involves the formation of an intermediate oxyhydroxide, BaSnO(OH)4. TEM studies show that particle size of the resulting BaSnO3 ranges from 0.2–0.6 μm. Solid solutions of Ba(Ti, Sn) O3 were prepared from (TiO2+SnO2)·xH2O mixed gel and Ba(OH)2 solutions. Single-phase perovskite Ba(Ti, Sn)O3 was obtained up to 35 atom % Sn. Above this composition, the hydrothermal products are mixtures of BaTiO3 (cubic) and BaSn(OH)6·3H2O which on heating at ≈260°C give rise to BaTiO3+BaSnO3. Annealing at 1000°C results in monophasic Ba(Ti, Sn)O3, in the complete range of Sn/Ti. Formation of the hydrated phase is attributed to the amphoteric nature of SnO2·xH2O gel which stabilises Sn(OH)62− anions under higher H2O-pressures and elevated temperatures. The sintering characteristics and dielectric properties of ceramics prepared from these fine powders are presented.
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the optimal load flow problem in a fixed-head hydrothermal electric power system. Equality constraints on the volume of water available for active power generation at the hydro plants as well as inequality constraints on the reactive power generation at the voltage controlled buses are imposed. Conditions for optimal load flow are derived and a successive approximation algorithm for solving the optimal generation schedule is developed. Computer implementation of the algorithm is discussed, and the results obtained from the computer solution of test systems are presented.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.