942 resultados para Kreeger, Terry J.: Handbook of wildlife chemical immobilization
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations
Resumo:
Cork is the bark of the cork oak tree (Quercus suber L), a renewable and biodegradable raw bioresource concentrated mainly in the Mediterranean region. Development of its potential uses as a biosorbent will require the investigation of its chemical composition; such information can be of help to understand its interactions with organic pollutants. The present study investigates the summative chemical composition of three bark layers (back, cork, and belly) of five Spanish cork samples and one cork sample from Portugal. Suberin was the main component in all the samples (21.1 to 53.1%), followed by lignin (14.8 to 31%), holocellulose (2.3 to 33.6%), extractives (7.3 to 20.4%), and ash (0.4 to 3.3%). The Kruskal-Wallis test was used to determine whether the variations in chemical composition with respect to the production area and bark layers were significant. The results indicate that, with respect to the bark layer, significant differences were found only for suberin and holocellulose contents: they were higher in the belly and cork than in the back. Based on the results presented, cork is a material with a lot of potential because of its heterogeneity in chemical composition
Resumo:
About sixty small water bodies (coastal lagoons, marshes, salt pans, channels, springs, etc.) of the Spanish Mediterranean coast were sampled seasonally for one year (1979-1980), in order to study different aspects of their chemical composition. The concentrations of major ions (alkalinity, Cl-, Ca2+, Mg2+, Na+, and K+), nutrients (N.NO-3, N.NO2-, TRP and Si), oxygen and pH were determined for this purpose. The salt concentrations measured range between 0.4 and 361.3 g l-1. The samples have been divided into four classes of salinity (in g l-1): Cl, S < 5; C2, 5 40. Within these classes, the pattern of ionic dominance recorded is remarkably constant and similar to that found in most coastal lagoons (Cl- > So42- > Alk., for the anions, and Na+ > Mg2+ > Ca2+ > K+, for the cations), although other models occur especially in the first class. The dominance of Na+ and Cl-, as well as the molar ratios Mg2+/Ca2+ and Cl- / SO42- ,clearly increase from class Cl to class C4. The hyperhaline waters include different subtypes of the major brine type"c",, of EUGSTER & HARDIE (1978), the Na+ - (Mg2+) - Cl- - (SO42-) being the most frequent. Nutrient concentrations fall within a wide range (N.NO3 from 0.1 to 1100 mg-at 1-1; PRT from 0.01 to 23.56 mg-at l-1 and Si from 1.0 to 502.0 mg-at l-1). The oxygen values are very variable too, ranging between 0 and 14.4 ml l-1. Four different patterns of nutrient distribution have been distinguished based on the mean concentrations of N.NO3-, and TRP (mean values in mg-at l-1): A, N.NO3- < 10, TRP > l ; B, N.NO3- > 100, TRP < 1; C, 10 < N.NO3- < 100, TRP < 1; C, D, N.NO3- < 10, TRP < 1. As a rule, lagoons of low salinity (C1 and C2 classes) display the nutrient pattern C, and lagoons of high salinity (C3 and C4) show the nutrient pattern D. Model A only appears in waters of very low salinity, whereas model B does not seem to be related to salinity.
Resumo:
This minireview is meant as an introduction to the following paper. To this end, it presents the general background against which the joint paper should be understood. The first objective of the present paper is thus to clarify some concepts and related terminology, drawing a clear distinction between i) atomic diversity (i.e., atomic-property space), ii) molecular or macromolecular diversity (i.e., molecular- or macromolecular-property spaces), and iii) chemical diversity (i.e., chemical-diversity space). The first refers to the various electronic states an atom can occupy. The second encompasses the conformational and property spaces of a given (macro)molecule. The third pertains to the diversity in structure and properties exhibited by a library or a supramolecular assembly of different chemical compounds. The ground is thus laid for the content of the joint paper, which pertains to case ii, to be placed in its broader chemodiversity context. The second objective of this paper is to point to the concepts of chemodiversity and biodiversity as forming a continuum. Chemodiversity is indeed the material substratum of organisms. In other words, chemodiversity is the material condition for life to emerge and exist. Increasing our knowledge of chemodiversity is thus a condition for a better understanding of life as a process.
Resumo:
Human biomonitoring is a widely used method in the assessment of occupational exposure to chemical substances and recommended biological limits are published periodically for interpretation and decision-making. However, it is increasingly recognized that a large variability is associated with biological monitoring, making interpretation less efficient than assumed. In order to improve the applicability of biological monitoring, specific factors responsible for this variability should be identified and their contribution quantified. Among these factors, age and sex are easily identifiable, and present knowledge about pharmaceutical chemicals suggests that they play an important role on the toxicokinetics of occupational chemical agents, and therefore on the biological monitoring results.The aim of the present research project was to assess the influence of age and sex on biological indicators corresponding to organic solvents. This has been done experimentally and by toxicokinetic computer simulation. Another purpose was to explore the effect of selected CYP2E1 polymorphisms on the toxicokinetic profile.Age differences were identified by numerical simulations using a general toxicokinetic model from a previous study which was applied to 14 chemicals, representing 21 specific biological entities, with, among others, toluene, phenol, lead and mercury. These models were runn with the modified parameters, indicating in some cases important differences due to age. The expected changes are mostly of the order of 10-20 %, but differences up to 50 % were observed in some cases. These differences appear to depend on the chemical and on the biological entity considered.Sex differences were quantified by controlled human exposures, which were carried out in a 12 m3 exposure chamber for three organic solvents separately: methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1-trichloroethane. The human volunteer groups were composed 12 of ten young men and fifteen young women, the latter subdivided into those with and without hormonal contraceptive. They were exposed during six hours at rest and at half of the threshold limit value. The kinetics of the parent compounds (organic volatiles) and their metabolite(s) were followed in blood, urine and expired air over time. Analyses of the solvent and their metabolites were performed by using headspace gas chromatography, CYP2E1 genotypes by using PCR-based RFLP methods. Experimental data were used to calibrate the toxicokinetic models developed for the three solvents. The results obtained for the different biomarkers of exposure mainly showed an effect on the urinary levels of several biomarkers among women due to the use of hormonal contraceptive, with an increase of about 50 % in the metabolism rate. The results also showed a difference due to the genotype CYP2E1*6, when exposed to methyl ethyl ketone, with a tendency to increase CYP2E1 activity when volunteers were carriers of the mutant allele. Simulations showed that it is possible to use simple toxicokinetic tools in order to predict internal exposure when exposed to organic solvents. Our study suggests that not only physiological differences but also exogenous sex hormones could influence CYP2E1 enzyme activity. The variability among the urinary biological indicators levels gives evidence of an interindividual susceptibility, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Prior to European settlement, wetland basins covered 4 to 6 million acres, or approximately 11% of Iowa's surface area. Wetlands were part of every watershed in the state, but nearly 95% of them have been drained for agriculture. As Iowa was settled wetlands were drained and developed, resulting in the loss of wildlife habitat, damage to water quality, rapid topsoil erosion, and increased incidents and severity of flooding. The condition of Iowa’s remaining wetlands is poorly known. The goal of this project was to assess the ecological condition of prairie pothole wetlands in a defined region of north-central Iowa. This project has worked to develop and establish our wetland sampling methods, while providing baseline data regarding the basic chemical, physical, and biological status of Iowa’s permanent and semi-permanent wetland resources. The baseline data obtained from our monitoring methods is mainly in the form of numerical values derived from the lab analyses of our samples. This data will be used to begin building a database to interpret ecological condition changes in Iowa’s wetlands as the sampling regime and assessment methodology are repeated over time.
Resumo:
The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC). Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM) decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.
Resumo:
For the first time in Finland, the chemical profiling of cocaine specimens was performed at the National Bureau of Investigation (NBI). The main goals were to determine the chemical composition of cocaine specimens sold in the Finnish market and to study the distribution networks of cocaine in order to provide intelligence related to its trafficking. An analytical methodology enabling through one single GC-MS injection the determination of the added cutting agents (adulterants and diluents), the cocaine purity and the chemical profile (based on the major and minor alkaloids) for each specimen was thus implemented and validated. The methodology was found to be efficient for the discrimination between specimens coming from the same source and specimens coming from different sources. The results highlighted the practical utility of the chemical profiling, especially for supporting the investigation through operational intelligence and improving the knowledge related to the cocaine trafficking through strategic intelligence.
Resumo:
The dielectric functions of InP, In0.53Ga0.47As, and In0.75Ga0.25As0.5P0.5 epitaxial layers have been measured using a polarization modulation spectroscopic ellipsometer in the 1.5 to 5.3 eV region. The oxide removal procedure has been carefully checked by comparing spectroscopic ellipsometry and x ray photoelectron spectroscopy measurements. These reference data have been used to investigate the structural nature of metalorganic chemical vapor deposition grown In0.53Ga0.47As/InP and In0.75Ga0.25As0.5P0.5/InP heterojunctions, currently used for photodiodes and laser diodes. The sharpness of the interfaces has been systematically compared for the two types of heterojunctions: In1 xGaxAsy/InP and InP/In1 xGaxAsyP1 y. The sharpest interface is obtained for InP growth on In0.75Ga0.25As0.5P0.5 where the interface region is estimated to be (10±10) Å thick. The importance of performing in situ SE measurements is emphasized.
Resumo:
relationship between productivity and international position of Spanish chemical firms in the period 2005-2011. The goal is to determine whether companies that follow and international strategy, either with exports or by investment in foreign countries obtain greater productivity growth than these that do not operate in global market. For this purpose a panel data set with microdata has been created. A preliminary analysis of the evolution of productivity growth in the sector is carried out. The measurement of Total Factor Productivity is performed. With the estimated TFP we analyze the differentials in productivity growth, comparing the effects of export and investment behavior with non-international firms.
Resumo:
ABSTRACT The climate change, the quest for sustainability and the strong environmental pressures for alternatives to traditional fossil fuels have increased the interest in the search and use of renewable energy sources. Among them stands out the biomass of charcoal coming from renewable forests, widely used as a thermal reductant in the steel industry in the detriment of the use of mineral coal coke. This study aimed to compare different operating procedures of immediate chemical analysis of charcoal. Seven essays to immediate chemical analysis were compared, spread between procedures performed by Brazilian companies and laboratories, the test described by NBR 8112 and one realized with a thermogravimetric analyzer (TGA) using the parameters of the NBR 8112. There were significant differences in the volatiles matter content and consequently in the fixed carbon contents found. The differences between the procedures and the NBR 8112 were caused by an excess burning time, a mass sample above or below the standard or inappropriate container used for burning. It observed that the TGA appraisal of the volatiles content must be carried out with a burning time equal to 2 minutes to obtain results similar to those of the NBR 8112 norm. Moreover, the ash content values were statistically identical and the particles size did not influence the differences between means.
Resumo:
The influence of physical-chemical characteristics of maize grains and lactic acid concentrations on byproduct yields, generated by conventional wet milling, was studied during steeping, for four maize hybrids and two lactic acid concentrations (0.55 and 1.00%). For physical-chemical characterization, grain dimensions (length, thickness, and width) were determined, as well as mass of 100 grains, percentage of floating grains, volumetric mass, and centesimal composition. Statistical differences were found for percentage of floating grains (2.33 to 24.67%), volumetric mass (0.814 to 0.850 kg.L-1), mass of 100 grains (0.033 to 0.037 kg), water content (11.86 to 12.20%), proteins (8.21 to 9.06%), lipids (3.00 to 4.77%), and ashes (1.07 to 1.26%). There were no relationships of wet milling yields with maize appearance and physical-chemical characteristics. The addition of 1.00% lactic acid did not statistically improve byproduct yields; however, it favored separation of the grain components.
Resumo:
Cotton is highly susceptible to the interference imposed by weed community, being therefore essential to adopt control measures ensuring the crop yield. Herbicides are the primary method of weed control in large-scale areas of production, and usually more than one herbicide application is necessary due to the extensive crop cycle. This study aimed to evaluate the selectivity of different chemical weed control systems for conventional cotton. The experiment took place in the field in a randomized block design, with twenty nine treatments and four replications in a split plot layout (adjacent double check). Results showed that triple mixtures in pre-emergence increased the chance of observing reductions in the cotton yield. To avoid reductions in crop yield, users should proceed to a maximum mixture of two herbicides in pre-emergence, followed by S-metolachlor over the top, followed by one post-emergence mixture application of pyrithiobac-sodium + trifloxysulfuron-sodium.
Resumo:
This study aimed to control different populations of Digitaria insularisby glyphosate herbicide, isolated and mixed, besides the combination of methods (chemical and mechanical) to manage resistant adult plants. Three experiments were conducted, one in pots which were maintained under non-controlled conditions and two under field conditions. In the experiment in pots, twelve populations of D. insularis were sprayed with isolated glyphosate (1.44 and 2.16 kg a.e. ha-1) and mixed (1.44 and 2.16 kg a.e. ha-1) with quizalofop-p tefuryl (0.12 kg i.a. ha-1). The treatment of 1.44 kg a.e. ha-1 of glyphosate plus 0.12 kg a.i. ha-1 of quizalofop was sufficient for adequate control (>95%) of all populations. Population 11 (area of grain production in Itumbiara, GO) was considered sensitive to glyphosate. Others populations were moderately sensitive or tolerant to the herbicide. In the field, the plants of D. insularis of one of the experiments were mowed and, in the other, there were not. Eight treatments with herbicides [isolated glyphosate (1.44 and 2.16 kg a.e. ha-1) and mixed (1.44 and 2.16 kg a.e. ha-1) with quizalofop-p-tefuryl at 0.12 kg a.i. ha-1), clethodim at 0.108 kg a.i. ha-1) or nicosulfuron at 0.06 kg a.i. ha-1)] were assessed, in combination with or without sequential application of the standard treatment, sprayed 15 days after the first application. The combination of the mechanic control with the application of glyphosate (2.16 and 1.44 kg a.e. ha-1) plus quizalofop-p-tefuryl (0.12 kg a.i. ha-1) or clethodim (0.108 kg a.i. ha-1), associated to the sequential application, was the most effective strategy for the management of adult plants of resistant D. insularis.