847 resultados para Jeff Godfrey


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of the accuracy of parameters related to the reactor core performance (e.g., ke) and f el cycle (e.g., isotopic evolution/transmutation) due to the uncertainties in the basic nuclear data (ND) is a critical issue. Different error propagation techniques (adjoint/forward sensitivity analysis procedures and/or Monte Carlo technique) can be used to address by computational simulation the systematic propagation of uncertainties on the final parameters. To perform this uncertainty assessment, the ENDF covariance les (variance/correlation in energy and cross- reactions-isotopes correlations) are required. In this paper, we assess the impact of ND uncertainties on the isotopic prediction for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) for a discharge burnup of 150 GWd/tHM. The complete set of uncertainty data for cross sections (EAF2007/UN, SCALE6.0/COVA-44G), radioactive decay and fission yield data (JEFF-3.1.1) are processed and used in ACAB code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T actitivity in LiPb LiPb mock-up material irradiated in Frascati: measurement and MCNP results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neutron capture (n,gamma) cross-section for 27-Co-58 theoretically presents a single resonance for 9 eV. However, after plotting the processed library, a discontinuity is made clear as the cross section plummets down to cero in a small range of energy where the peak of the resonance would be expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generation of a complete damage energy and dpa cross section library up to 150 MeVbased on JEFF- 3.1.1 and suitable approximations (UPM) Postprocessing of photonuclear libraries (by CCFE) and thermal scattering  tables (by UPM) at the backend of the calculational system (CCFE/UPM)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the language identification (LID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. We show that techniques originally developed for LID on telephone speech (e.g., for the NIST language recognition evaluations) remain effective on the noisy RATS data, provided that careful consideration is applied when designing the training and development sets. In addition, we show significant improvements from the use of Wiener filtering, neural network based and language dependent i-vector modeling, and fusion.