998 resultados para Jean-Pierre Lemaire


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four strains of the coccolithophore E. huxleyi (RCC1212, RCC1216, RCC1238, RCC1256) were grown in dilute batch culture at four CO2 levels ranging from ~200 µatm to ~1200 µatm. Growth rate, particulate organic carbon content, and particulate inorganic carbon content were measured, and organic and inorganic carbon production calculated. The four strains did not show a uniform response to carbonate chemistry changes in any of the analysed parameters and none of the four strains displayed a response pattern previously described for this species. We conclude that the sensitivity of different strains of E. huxleyi to acidification differs substantially and that this likely has a genetic basis. We propose that this can explain apparently contradictory results reported in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO2-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH4Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na-free seawater indicate a potential role of Na/H plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the interactive effects of pCO2 and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO2 (750 ppmv), and a range of growth light from 30 to 380 µmol photons/m**2/s. Elevated pCO2 significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO2 susceptibility to photoinactivation of photosystem II (sigma i) increased with increasing growth rate, but cells growing under elevated pCO2 showed no dependence between growth rate and sigma i, so under high growth light cells under elevated pCO2 were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO) and PsaC (PSI) protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24°C, 700-2.140 µatm) for 8 weeks in a batch culture and at four pCO2 levels (20°C, 620-2.870 µatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 µatm pCO2 as is already naturally experienced by the investigated barnacle population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification may stimulate primary production through increased availability of inorganic carbon in the photic zone, which may in turn change the biogenic flux of dissolved organic carbon (DOC) and the growth potential of heterotrophic bacteria. To investigate the effects of ocean acidification on marine bacterial assemblages, a two-by-three factorial mescosom experiment was conducted using surface sea water from the East Greenland Current in Fram Strait. Pyrosequencing of the V1-V2 region of bacterial 16S ribosomal RNA genes was used to investigate differences in the endpoint (Day 9) composition of bacterial assemblages in mineral nutrient-replete mesocosms amended with glucose (0 µm, 5.3 µm and 15.9 µm) under ambient (250 µatm) or acidified (400 µatm) partial pressures of CO2 (pCO2). All mesocosms showed low richness and diversity by Chao1 estimator and Shannon index, respectively, with general dominance by Gammaproteobacteria and Flavobacteria. Nonmetric multidimensional scaling analysis and two-way analysis of variance of the Jaccard dissimilarity matrix (97% similarity cut-off) demonstrated that the significant community shift between 0 µm and 15.9 µm glucose addition at 250 µatm pCO2 was eliminated at 400 µatm pCO2. These results suggest that the response potential of marine bacteria to DOC input may be altered under acidified conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chitons (class Polyplacophora) are benthic grazing molluscs with an eight-part aragonitic shell armature. The radula, a serial tooth ribbon that extends internally more than half the length of the body, is mineralised on the active feeding teeth with iron magnetite apparently as an adaptation to constant grazing on rocky substrates. As the anterior feeding teeth are eroded they are shed and replaced with a new row. The efficient mineralisation and function of the radula could hypothetically be affected by changing oceans in two ways: changes in seawater chemistry (pH and pCO2) may impact the biomineralisation pathway, potentially leading to a weaker or altered density of the feeding teeth; rising temperatures could increase activity levels in these ectothermic animals, and higher feeding rates could increase wear on the feeding teeth beyond the animals' ability to synthesise, mineralise, and replace radular rows. We therefore examined the effects of pH and temperature on growth and integrity in the radula of the chiton Leptochiton asellus. Our experiment implemented three temperature (10, 15, 20 °C) and two pCO2 treatments (400 µatm, pH 8.0; 2000 µatm, pH 7.5) for six treatment groups. Animals (n = 50) were acclimated to the treatment conditions for a period of 4 weeks. This is sufficient time for growth of ca. 7-9 new tooth rows or 20% turnover of the mineralised portion. There was no significant difference in the number of new (non-mineralised) teeth or total tooth row count in any treatment. Examination of the radulae via SEM revealed no differences in microwear or breakage on the feeding cusps correlating to treatment groups. The shell valves also showed no signs of dissolution. As a lineage, chitons have survived repeated shifts in Earth's climate through geological time, and at least their radulae may be robust to future perturbations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19-25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shells of the bivalve Arctica islandica are used to reconstruct paleo-environmental conditions (e.g. temperature) via biogeochemical proxies, i.e. biogenic components that are related closely to environmental parameters at the time of shell formation. Several studies have shown that proxies like element and isotope-ratios can be affected by shell growth and microstructure. Thus it is essential to evaluate the impact of changing environmental parameters such as high pCO2 and consequent changes in carbonate chemistry on shell properties to validate these biogeochemical proxies for a wider range of environmental conditions. Growth experiments with Arctica islandica from the Western Baltic Sea kept under different pCO2 levels (from 380 to 1120 µatm) indicate no affect of elevated pCO2 on shell growth or crystal microstructure, indicating that A. islandica shows an adaptation to a wider range of pCO2 levels than reported for other species. Accordingly, proxy information derived from A. islandica shells of this region contains no pCO2 related bias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surprisingly little is known about potential effects of ocean acidification on krill of the Northern Hemisphere as ecologically very important food web component. Sub-adult individuals of the northern Atlantic krill species Nyctiphanes couchii (caught at Austevoll near Bergen, Norway, in January 2013) were exposed in the laboratory to four different levels of pCO2 (430, 800, 1,100, and 1,700 µatm) for 5 weeks in order to assess potential changes in a set of biological response variables. Survival decreased and the frequency of moulting-related deaths increased with increasing pCO2. Survival was considerably reduced at relatively high pCO2 of 1,700 µatm and tended to be negatively affected at 1,100 µatm pCO2. However, the experimental results show no significant effects of pCO2 on inter-moult period and growth at pCO2 levels below 1,100 µatm. No differences in length measurements of the carapace and uropod were observed across pCO2 levels, indicating no effect of changing carbonate chemistry on the morphology of those calciferous parts of the exoskeleton. The results suggest that sub-adult N. couchii may not suffer dramatically from predicted near-future changes in pCO2. However, potential detrimental effects on the moulting process and associated higher mortality at 1,100 µatm pCO2 cannot be excluded. Further experiments are needed in order to investigate whether early life stages of N. couchii show a different sensitivity to elevated sea water pCO2 and whether those results are transferable to other krill species of the Northern Hemisphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Precipitation of calcium carbonate by phytoplankton in the photic oceanic layer is an important process regulating the carbon cycling and the exchange of CO2 at the ocean-atmosphere interface. Previous experiments have demonstrated that, under nutrient-sufficient conditions, doubling the partial pressure of CO2 (pCO2) in seawater-a likely scenario for the end of the century-can significantly decrease both the rate of calcification by coccolithophorids and the ratio of inorganic to organic carbon production. The present work investigates the effects of high pCO2 on calcification by the coccolithophore Emiliania huxleyi (Strain TW1) grown under nitrogen-limiting conditions, a situation that can also prevail in the ocean. Nitrogen limitation was achieved in NO3-limited continuous cultures renewed at the rate of 0.5 d-1 and exposed to a saturating light level. pCO2 was increased from 400 to 700 ppm and controlled by bubbling CO2-rich or CO2-free air into the cultures. The pCO2 shift has a rapid effect on cell physiology that occurs within 2 cell divisions subsequent to the perturbation. Net calcification rate (C) decreased by 25% and, in contrast to previous studies with N-replete cultures, gross community production (GCP) and dark community respiration (DCR) also decreased. These results suggest that increasing pCO2 has no noticeable effect on the calcification/photosynthesis ratio (C/P) when cells of E. huxleyi are NO3-limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 µatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 µatm were observed at the surface and >3000 µatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 µatm) in comparison to a low pCO2 outer fjord station (ca. 600 µatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elevated seawater pCO2, and in turn ocean acidification (OA), is now widely acknowledged to reduce calcification and growth of reef building corals. As with other environmental factors (e.g., temperature and nutrients), light availability fundamentally regulates calcification and is predicted to change for future reef environments alongside elevated pCO2 via altered physical processes (e.g., sea level rise and turbidity); however, any potential role of light in regulating the OA-induced reduction of calcification is still unknown. We employed a multifactorial growth experiment to determine how light intensity and pCO2 together modify calcification for model coral species from two key genera, Acropora horrida and Porites cylindrica, occupying similar ecological niches but with different physiologies. We show that elevated pCO2 (OA)-induced losses of calcification in the light (G L) but not darkness (G D) were greatest under low-light growth conditions, in particular for A. horrida. High-light growth conditions therefore dampened the impact of OA upon G L but not G D. Gross photosynthesis (P G) responded in a reciprocal manner to G L suggesting OA-relieved pCO2 limitation of P G under high-light growth conditions to effectively enhance G L. A multivariate analysis of past OA experiments was used to evaluate whether our test species responses were more widely applicable across their respective genera. Indeed, the light intensity for growth was identified as a significant factor influencing the OA-induced decline of calcification for species of Acropora but not Porites. Whereas low-light conditions can provide a refuge for hard corals from thermal and light stress, our study suggests that lower light availability will potentially increase the susceptibility of key coral species to OA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pteropods are planktonic mollusks that play an important role in the food web of various ecosystems, particularly at high latitudes. Because they produce an aragonitic shell, pteropods are expected to be very sensitive to ocean acidification driven by anthropogenic CO2 emissions. The effect of ocean acidification was investigated using juveniles of the Arctic pteropod Limacina helicina from the Canada Basin of the Arctic Ocean. The animals were maintained in 3 controlled pH conditions (total scale pH [pHT] = 8.05, 7.90 or 7.75) for 8 d, and their mortality and the linear extension of their shell were monitored. The pH did not impact the mortality rate, but the linear extension of the shell decreased as a function of declining pH. Surprisingly, the pteropods were still able to extend their shell at an aragonite saturation state as low as 0.6. Nevertheless, dissolution marks were visible on the whole shell, indicating that calcium carbonate dissolution had also occurred, casting doubts on the ability of the pteropods to maintain a positive balance between precipitation and dissolution of calcium carbonate under corrosive conditions.