969 resultados para Italian literature (Collection)
Resumo:
Design process phases of development, evaluation and implementation were used to create a garment to simultaneously collect reliable data of speech production and intensity of movement of toddlers (18-36 months). A series of prototypes were developed and evaluated that housed accelerometer-based motion sensors and a digital transmitter with microphone. The approved test garment was a top constructed from loop-faced fabric with interior pockets to house devices. Extended side panels allowed for sizing. In total, 56 toddlers (28 male; 28 female; 16-36 months of age) participated in the study providing pilot and baseline data. The test garment was effective in collecting data as evaluated for accuracy and reliability using ANOVA for accelerometer data, transcription of video for type of movement, and number and length of utterances for speech production. The data collection garment has been implemented in various studies across disciplines.
Resumo:
This paper firstly presents the benefits and critical challenges on the use of Bluetooth and Wi-Fi for crowd data collection and monitoring. The major challenges include antenna characteristics, environment’s complexity and scanning features. Wi-Fi and Bluetooth are compared in this paper in terms of architecture, discovery time, popularity of use and signal strength. Type of antennas used and the environment’s complexity such as trees for outdoor and partitions for indoor spaces highly affect the scanning range. The aforementioned challenges are empirically evaluated by “real” experiments using Bluetooth and Wi-Fi Scanners. The issues related to the antenna characteristics are also highlighted by experimenting with different antenna types. Novel scanning approaches including Overlapped Zones and Single Point Multi-Range detection methods will be then presented and verified by real-world tests. These novel techniques will be applied for location identification of the MAC IDs captured that can extract more information about people movement dynamics.
Resumo:
Data associated with germplasm collections are typically large and multivariate with a considerable number of descriptors measured on each of many accessions. Pattern analysis methods of clustering and ordination have been identified as techniques for statistically evaluating the available diversity in germplasm data. While used in many studies, the approaches have not dealt explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions). To consider the application of these techniques to germplasm evaluation data, 11328 accessions of groundnut (Arachis hypogaea L) from the International Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the rainy and post-rainy growing seasons were used. The ordination technique of principal component analysis was used to reduce the dimensionality of the germplasm data. The identification of phenotypically similar groups of accessions within large scale data via the computationally intensive hierarchical clustering techniques was not feasible and non-hierarchical techniques had to be used. Finite mixture models that maximise the likelihood of an accession belonging to a cluster were used to cluster the accessions in this collection. The patterns of response for the different growing seasons were found to be highly correlated. However, in relating the results to passport and other characterisation and evaluation descriptors, the observed patterns did not appear to be related to taxonomy or any other well known characteristics of groundnut.
Resumo:
As a sequel to a paper that dealt with the analysis of two-way quantitative data in large germplasm collections, this paper presents analytical methods appropriate for two-way data matrices consisting of mixed data types, namely, ordered multicategory and quantitative data types. While various pattern analysis techniques have been identified as suitable for analysis of the mixed data types which occur in germplasm collections, the clustering and ordination methods used often can not deal explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions) with incomplete information. However, it is shown that the ordination technique of principal component analysis and the mixture maximum likelihood method of clustering can be employed to achieve such analyses. Germplasm evaluation data for 11436 accessions of groundnut (Arachis hypogaea L.) from the International Research Institute of the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the post-rainy season and five ordered multicategory descriptors were used. Pattern analysis results generally indicated that the accessions could be distinguished into four regions along the continuum of growth habit (or plant erectness). Interpretation of accession membership in these regions was found to be consistent with taxonomic information, such as subspecies. Each growth habit region contained accessions from three of the most common groundnut botanical varieties. This implies that within each of the habit types there is the full range of expression for the other descriptors used in the analysis. Using these types of insights, the patterns of variability in germplasm collections can provide scientists with valuable information for their plant improvement programs.
Resumo:
Knowledge of the amounts and types of fatty acids in groundnut oil is beneficial, particularly from a nutritional standpoint. Germplasm evaluation data for fatty acid composition on 819 accessions of groundnut (Arachis hypogaea L.) from the Australian Tropical Field Crops Genetic Resource Centre, Biloela, Queensland were examined. Data for eight quantitative fatty acid descriptors have been documented. Statistical assessment, via methods of pattern analysis, summarised and described the patterns of variation in fatty acid composition of the groundnut accessions in the Australian germplasm collection. Presentation of the results from principal components analysis and hierarchical cluster analysis using a biplot was shown to be a very useful interpretative tool. Such a biplot enables a simultaneous examination of the relationships among all the accessions and the fatty acids. Unlike that information available via database searches, the results from contribution analysis together with the biplot provide a global picture of the diversity available for use in plant breeding programs. The use of standardised data for eight fatty acids, compared to using three specific fatty acids, provided a better description of the total diversity available because it remains relevant with possible changes in the nutritional preferences for fatty acids. Fatty acid composition was found to vary in relation to the branching pattern of the accessions. This pattern is generally indicative of the botanical types of groundnuts; Virginia (alternate) compared to Spanish and Valencia (sequential) botanical types.
Resumo:
Information on the variation available for different plant attributes has enabled germplasm collections to be effectively utilised in plant breeding. A world sourced collection of white clover germplasm has been developed at the White Clover Resource Centre at Glen Innes, New South Wales. This collection of 439 accessions was characterised under field conditions as a preliminary study of the genotypic variation for morphological attributes; stolon density, stolon branching, number of nodes. number of rooted nodes, stolon thickness, internode length, leaf length, plant height and plant spread, together with seasonal herbage yield. Characterisation was conducted on different batches of germplasm (subsets of accessions taken from the complete collection) over a period of five years. Inclusion of two check cultivars, Haifa and Huia, in each batch enabled adjustment of the characterisation data for year effects and attribute-by-year interaction effects. The component of variance for seasonal herbage yield among batches was large relative to that for accessions. Accession-by-experiment and accession-by-season interactions for herbage yield were not detected. Accession mean repeatability for herbage yield across seasons was intermediate (0.453). The components of genotypic variance among accessions for all attributes, except plant height, were larger than their respective standard errors. The estimates of accession mean repeatability for the attributes ranged from low (0.277 for plant height) to intermediate (0.544 for internode length). Multivariate techniques of clustering and ordination were used to investigate the diversity present among the accessions in the collection. Both cluster analysis and principal component analysis suggested that seven groups of accessions existed. It was also proposed from the pattern analysis results that accessions from a group characterised by large leaves, tall plants and thick stolons could be crossed with accessions from a group that had above average stolon density and stolon branching. This material could produce breeding populations to be used in recurrent selection for the development of white clover cultivars for dryland summer moisture stress environments in Australia. The germplasm collection was also found to be deficient in genotypes with high stolon density, high number of branches high number of rooted nodes and large leaves. This warrants addition of new germplasm accessions possessing these characteristics to the present germplasm collection.
Resumo:
1000 voices is an international web-based platform for gathering and displaying more than 1000 life stories about the lived experience of people with disability. The site contains life stories told by people with disability that are presented in multiple media and formats, including text, audio, video, graphics and visual art...
Resumo:
Background Participation in regular physical activity is among the most promising and cost effective strategies to reduce physical and cognitive decline and premature death. However, confusion remains about the amount, frequency, and duration of physical activity that is likely to provide maximum benefit as well as the way in which interventions should be delivered. Aims This paper aimed to review research on the impact of leisure-time and general physical activity levels on physical and cognitive decline in postmenopausal women. In a systematic review of the literature, empirical literature from 2009-2013 is reviewed to explore the potential impact of either commencing or sustaining physical activity on older women’s health. Results All studies found that physical activity was associated with lower rates of cognitive and physical decline and a significant reduction in all-cause mortality. In this review we found that exercise interventions (or lifestyle activities) that improved cardiorespiratory exercise capacity showed the most positive impact on physical health. Conclusions Findings suggest that programs should facilitate and support women to participate in regular exercise by embedding physical activity programs in public health initiatives, by developing home-based exercise programs that require few resources and by creating interventions that can incorporate physical activity within a healthy lifestyle. The review also suggests that clinicians should consider prescribing exercise in a tailored manner for older women to ensure that it is of a high enough intensity to obtain the positive sustained effects of exercise.
Resumo:
This article addresses the questions of whether there are motivational deficits in children with intellectual disabilities, whether those with Down syndrome are more likely to display motivational deficits, and how motivation might be supported. The available literature that has examined motivation in children with intellectual disabilities was considered and integrated to address the questions outlined above. There is little published research on this vital topic. Reports on motivational problems differ depending upon the method of data collection. Observational studies using structured tasks generally reveal no differences between children with intellectual disabilities and typically developing children matched for mental age. When reports of parents or teachers are used, children with intellectual disabilities appear to have deficits in motivation. No evidence was found for a particular deficit in children with Down syndrome. The results of this review challenge the perception that children with intellectual disabilities will generally have motivational problems, although it is clear that motivation is a complex construct, not easily examined in those with intellectual disabilities. Strategies for addressing problems and for maintaining motivation, based on theory and evidence, are provided. These strategies are applicable across a range of settings including the home, school, and more adult-oriented services.
Resumo:
Two of the three cross-curriculum priorities for the national Australian Curriculum prescribed by the Australian Curriculum Assessment and Reporting Authority (ACARA) are focussed on what might be called diversity education: “Aboriginal and Torres Strait Islander histories and culture”, and "Asia and Australia's Engagement with Asia” (ACARA, “Cross”). One need not be versed in complex rhetorical theory to understand that, laudable and legitimate as such priorities are, their existence implies that mainstream education in Australia has been or is characterised by the marginalisation or erasure of Australia's history—the original Indigenous cultures are not only living and vibrant today, but also have tens of thousands of years’ “head start” on Australia’s settler cultures—and of its geography—Australia is, after all, located in some physical proximity to Asia. Some might even suggest that Australia is in Asia. These temporal and spatial “forgettings” constitute a kind of cultural perversity which the cross-curricular priorities both seek to address and serve to reinscribe. Even as ACARA requires Australian school students to engage with Aboriginal and Asian histories, cultures, societies, they imply that such histories, cultures, and societies are “diverse”, that they are not those of the students in Australian classrooms; producing them as objects of study rather than as lived experience. This should not necessarily be surprising. Michael W. Apple has provocatively argued that: “one of the perverse effects of a national curriculum actually will be to ‘legitimise inequality.’ It may in fact help create the illusion that whatever the massive differences in schools, they all have something in common” (18). In the Australian context, attempts to mitigate such perversity are articulated via the selection of literary texts. As educators move to resource ACARA’s cross-curricular priorities, ACARA notes that “Teachers and schools are best placed to make decisions about the selection of texts in their teaching and learning programs that address the content in the Australian Curriculum while also meeting the needs of the students in their classes” (ACARA, “Advice”). This assertion appears on a webpage called “Advice on selection of literary texts” which is notable first and foremost for its total lack of any literary texts being named, and its list of weblinks pointing to lists of texts compiled elsewhere, by other organisations, and in the main, compiled to serve agendas other than the Australian curriculum. One of the major resources referred to by ACARA for literary text selection is the Children’s Book Council of Australia (CBCA). Of course, the CBCA’s annual book awards do not share ACARA’s educational priorities, but do have a history of being drawn upon by schools as a curriculum resource. In this paper, I consider the literary texts which have been prized by the CBCA in recent years attending to their engagements with Aboriginal cultures.
Resumo:
The objective of this chapter is to provide an overview of traffic data collection that can and should be used for the calibration and validation of traffic simulation models. There are big differences in availability of data from different sources. Some types of data such as loop detector data are widely available and used. Some can be measured with additional effort, for example, travel time data from GPS probe vehicles. Some types such as trajectory data are available only in rare situations such as research projects.
Resumo:
This project recognized lack of data analysis and travel time prediction on arterials as the main gap in the current literature. For this purpose it first investigated reliability of data gathered by Bluetooth technology as a new cost effective method for data collection on arterial roads. Then by considering the similarity among varieties of daily travel time on different arterial routes, created a SARIMA model to predict future travel time values. Based on this research outcome, the created model can be applied for online short term travel time prediction in future.
Resumo:
Research on Green Information Technology (IT) is becoming a prevalent research theme in Green Information Systems (IS) research. This article provides a review of 98 papers published on Green IT between 2007−2013 to facilitate future research and to provide a retrospective analysis of existing knowledge and gaps thereof. While some researchers have discussed phenomena such as Green IT, motivation of Green IT and the Green IT adoption lifecycle, others have researched the importance of Green IT implementation within the organisational and individual level. Throughout the literature, scholars are trying to portray a constructive relationship between IT and the environment. Through our analysis, we can provide an assessment of the status of information systems literature on Green IT and, we provide taxonomy of segments of Green IT publications. Future research opportunities are identified based on the review.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
Resumo:
In elite sports, nearly all performances are captured on video. Despite the massive amounts of video that has been captured in this domain over the last 10-15 years, most of it remains in an 'unstructured' or 'raw' form, meaning it can only be viewed or manually annotated/tagged with higher-level event labels which is time consuming and subjective. As such, depending on the detail or depth of annotation, the value of the collected repositories of archived data is minimal as it does not lend itself to large-scale analysis and retrieval. One such example is swimming, where each race of a swimmer is captured on a camcorder and in-addition to the split-times (i.e., the time it takes for each lap), stroke rate and stroke-lengths are manually annotated. In this paper, we propose a vision-based system which effectively 'digitizes' a large collection of archived swimming races by estimating the location of the swimmer in each frame, as well as detecting the stroke rate. As the videos are captured from moving hand-held cameras which are located at different positions and angles, we show our hierarchical-based approach to tracking the swimmer and their different parts is robust to these issues and allows us to accurately estimate the swimmer location and stroke rates.