956 resultados para Irregular satellites
Resumo:
Near-space, defined as the altitude region between 20 and 100 km, offers many capabilities that are not accessible for low Earth-orbit (LEO) satellites or airplanes because it is above storm and not constrained by orbital mechanics and high fuel consumption. Hence, a high flying speed can be obtained for the maneuvering vehicles operating in near-space. This offers a promising solution to simultaneous high-resolution and wide-swath synthetic aperture radar (SAR) imaging. As such, one near-space wide-swath SAR imaging technique is presented in this letter. The system configuration, signal model, and imaging scheme are described. An example near-space SAR system is designed, and its imaging performance is analyzed. Simulation results show that near-space maneuvering vehicle SAR indeed seems to be a promising solution to wide-swath SAR imaging.
Resumo:
Eddies are frequently observed in the northeastern South China Sea (SCS). However, there have been few studies on vertical structure and temporal-spatial evolution of these eddies. We analyzed the seasonal Luzon Warm Eddy (LWE) based on Argo float data and the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The analysis shows that the LWE extends vertically to more than 500 m water depth, with a higher temperature anomaly of 5A degrees C and lower salinity anomaly of 0.5 near the thermocline. The current speeds of the LWE are stronger in its uppermost 200 m, with a maximum speed of 0.6 m/s. Sometimes the LWE incorporates mixed waters from the Kuroshio Current and the SCS, and thus has higher thermohaline characteristics than local marine waters. Time series of eddy kinematic parameters show that the radii and shape of the LWE vary during propagation, and its eddy kinetic energy follows a normal distribution. In addition, we used the empirical orthogonal function (EOF) here to analyze seasonal characteristics of the LWE. The results suggest that the LWE generally forms in July, intensifies in August and September, separates from the coast of Luzon in October and propagates westward, and weakens in December and disappears in February. The LWE's westward migration is approximately along 19A degrees N latitude from northwest of Luzon to southeast of Hainan, with a mean speed of 6.6 cm/s.
Resumo:
Anti-cyclonic eddies northwest of Luzon of the Philippines in summer-fall are identified in the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The generation and propagation of the anti-cyclonic eddies, which are confirmed by satellite ocean color data, are found to be a seasonal phenomenon that is phase-locked to the onset of the southwesterly monsoon and the relaxation of the cyclonic wind curl in the northeastern South China Sea. The eddies originate from northwest of Luzon in summer, move across the northeastern South China Sea to reach the China continental slope in fall, and propagate southwestward along the continental slope in fall-winter, inducing shelfbreak current variations in the western South China Sea in fall-winter. The anti-cyclonic eddy discovered by Li et al. (1998) in the northern South China Sea is found to originate from northwest of Luzon and carry primarily the South China Sea waters. It does not appear to be an eddy shed from the Kuroshio in the Luzon Strait area as alluded by Li et al. (1998) and others.
Resumo:
用平板画线法从患病栉孔扇贝(Chlamys farreri)体内分离到了一种原核生物(简称QDP)。QDP可以在改进的液体培养基MEM(含2.2%NaCl,5%小牛血清)和脑心浸液(含2.2% NaCl)中生长;菌落在显微镜下(150×)为无色、透明的小点状;革兰氏染色阴性;菌体为圆形或近似圆形。QDP在发育过程中有两种状态,一种为未成熟阶段,直径小于100nm;另一种为成熟阶段,直径变化很大,最小约60nm,最大可达4µm以上。较小的个体有拟核、核糖体和新月状的空泡,未见细胞壁;较大的个体有细胞壁,胞内大部分被空泡充满,未见拟核和核糖体。栉孔扇贝组织超簿切片电镜观查证实QDP的存在。QDP的密度随着生长发育时间的不同而有所变化,繁殖高峰期密度较大。 建立了密度梯度离心结合滤膜过滤分离技术,优化人工培养条件。最适生长温度为23℃,最适生长pH值为7.4,最适生长盐度相当于细胞培养液所需的盐浓度(0.85%NaCl)。 提取的QDP核酸能被RNase A 降解,且没有检测到DNA。以PCR、RT-PCR扩增其16SrRNA基因序列片段,PCR反应没有扩增出扩增子,而RT-PCR则扩增出了16S rRNA基因序列片段,经测定其序列全长度为1430bp,经与GENEBANK中的16S rRNA片段比较分析,与6种不同科的微生物的同源率最高的为95%-95.47%。 采用温度梯度和病原浓度梯度回归感染实验方法,较为系统地研究了QDP的致病性。研究结果表明:QDP对栉孔扇贝有强烈的致病作用,高温(23℃以上)是其致病的必要条件,证实DQP是栉孔扇贝大规模死亡的病原体之一。
Resumo:
合成孔径雷达(SAR)是重要的微波传感器之一,在海洋遥感领域得到了广泛应用。浅海水下地形SAR探测是SAR海洋应用的重要部分之一,发展业务化水下地形SAR探测技术是水下地形SAR探测研究的最终目标。现有的水下地形SAR探测是基于单景SAR影像开展的,探测结果不能全面反映水下地形。因此,发展一种基于多源多时相SAR影像的水下地形反演方法是该研究方向的前沿问题。 本文基于水下地形SAR成像机制和袁业立(1997)导出的海波高频谱解析表达式,首次建立了基于多源多时相SAR影像的水下地形反演的同化模型与算法,并通过该模型在台湾浅滩水下地形SAR探测中的应用检验了该模型和算法的可行性。本文还开展了已有的浅海水下地形SAR探测技术(浅海水下地形单景SAR影像反演)在台湾浅滩水下地形探测中的应用研究,以及反演初始水深对水下地形SAR反演结果影响的研究。此外,本文还对中国近海水下地形SAR成像能力进行了分析。 在浅海水下地形SAR探测技术应用于台湾浅滩研究方面,基于7景SAR影像开展了台湾浅滩单景SAR影像反演计算,反演结果表明同一水下地形不同时相SAR影像反演结果不能全面反映真实地形特征。 在反演初始水深对水下地形SAR反演结果影响研究方面,通过不同初始水深条件下台湾浅滩水下地形SAR反演结果的比较分析,可以得出:初始水深影响水下地形反演结果的准确性,初始水深的选取需要较粗的实际水深的支持; 在多源多时相水下地形SAR反演同化模型研究方面, 建立了多源多时相水下地形SAR反演的同化模型与算法,通过基于多源多时相SAR影像的台湾浅滩五种不同情形水下地形反演计算,证明了多源多时相水下地形SAR反演同化模型和算法是可行的,并给出了基于多源多时相SAR影像的水下地形反演计算中SAR影像的选取原则。 在中国近海浅海水下地形SAR响应能力分析方面,基于对中国近海潮汐潮流状况、水下地形概况和已有中国近海SAR影像中水下地形特征等的分析,总结出中国近海适合开展浅海水下地形SAR探测的区域主要有:渤海海域、苏北近海海域、台湾海峡海域和南沙群岛海域。
Resumo:
Oysters are commonly found on rocky shores along China's northern coast, although there is considerable confusion as to what species they are. To determine the taxonomic status of these oysters, we collected specimens from nine locations north of the Yangtze River and conducted genetic identification using DNA sequences. Fragments from three genes, mitochondrial 165 rRNA, mitochondria! cytochrome oxidase I (COI), and nuclear 285 rRNA, were sequenced in six oysters from each of the nine sites. Phylogenetic analysis of all three gene fragments clearly demonstrated that the small oysters commonly found on intertidal rocks in north China are Crassostrea gigas (Thunberg, 1793), not C. plicatula (the zhe oyster) as widely assumed. Their small size and irregular shell characteristics are reflections of the stressful intertidal environment they live in and not reliable characters for classification. Our study confirms that the oysters from Weifang, referred to as Jinjiang oysters or C. rivularis (Gould, 1861), are C. ariakensis (Wakiya, 1929). We found no evidence for the existence of C. talienwhanensis (Crosse, 1862) and other Crassostrea species in north China. Our study highlights the need for reclassifying oysters of China with molecular data.
Resumo:
针对非结构环境地形特点,结合轮式、履带式移动机构在复杂地形环境中的运动特点,设计了一种适应于非结构环境的轮-履互换、履带几何形状可变化的复合型移动机器人。该轮-履复合型移动机器人的机构系统由一个控制箱体和两个相同的轮-履复合移动单元模块组成。每个轮-履复合移动单元模块由运动轮和几何形状可变的履带轮构成,在一个驱动力的作用下根据不同的约束环境而表现为轮式和履带式两种运动特征,同时此单元模块具有轮-履互换、履带几何形状可变等特点。运用理论推导、参数优化等方法对轮-履复合移动单元模块的机构参数进行了分析综合,并经仿真分析验证了机构参数选择的合理性,为轮-履复合、履带可变形移动机器人的机构参数化设计提供了理论依据。
Resumo:
提出一种新型链式可重构模块机器人平台,该机器人平台具有手动可重构和自动变形的特点,介绍一种三模块变形机器人样机。组成机器人的单个模块可以简化为由模块本体、连接臂和偏置关节组成。模块的数量可以根据实际工作的需要进行选择,模块间的连接具有规则连接和非规则连接两种方式;同时,由连接模块的偏置关节的运动,模块间的相对位置可以改变。由于模块连接方式的不同和模块间相对位置的变化,变形机器人具有多种非同构构形;为此,根据模块的物理结构和邻接关系提出了用构形矩阵来表达机器人结构的拓扑信息,并在仿真环境下进行等效描述;提出基于组合计数原理的递归算法,用于多模块变形机器人的非同构构形的计数,并根据构形矩阵的拓扑信息对构形进行评价。最后根据仿真结果给出了一种三模块变形机器人样机对称构形的设计示例,验证了算法的可行性。
Resumo:
地球形状的不规则性,各种导航传感器本身的误差,以及仪器的安装偏差等,使得AUV(自治水下机器人)在进行远距离自主航行时,自主导航的精度大大下降。针对以上问题及实际工程需要,论文对AUV自主导航的航位推算算法做了进一步研究并加以改进,以提高其自主导航精度。最后,利用2004年中国科学院沈阳自动化所水下机器人研究中心进行AUV湖试所获得的数据,对文中提出的算法进行了验证。结果表明,AUV的自主导航精度得到大大提高,可以用于修正原来的自主导航算法。
Resumo:
Proven by the petroleum exploration activities, the karsts-fissure reservoir in carbonate rocks is significant to find out the large scale oil & gas field. They are made up of the four reservoir types: karsts-cave, karsts-crack, crack-cave and fracture-pore-cave. Each reservoir space and each reservoir bed has different features of reservoir heterogeneity and small scale of pore-crack-cave. The fracture-cave reservoir in carbonate rocks is characteristic by multi-types and long oiliness well. The reservoir shape is controlled by the irregular pore-crack-cave. The development level of fracture and karst-cave is the key element of hydrocarbon enriching, high productivity and stable production. However, most of Carbonate formation are buried deeply and the signal-ration-noise of seismic reflection are very low. It is reason why the fracture-cave reservoir are difficult to be predicted effectively. In terms of surveyed and studied lots of the former research outcome, The author applied the methods of synthetical reservoir geophysical prediction from two ways including macrosopic and microcomic technics in terms of the reservoir-cap condition, geophysics and geology feature and difficulty of prediction in carbonate rocks. It is guiden by the new ideas of stratigraphy, sedimentology, sedimentography, reservoir geology and karst geology. The geophysics technology is key technics. In aspects of macroscopic studies, starting off the three efficiencies of controlling the reservoir distribution including sedimental facies, karst and fracture, by means of comprehensive utilization of geology, geophysics, boring well and well log, the study of reservoir features and karst inside story are developed in terms of data of individual well and multiple well. Through establishing the carbonate deposition model, karstic model and fracture model, the macro-distribution laws of carbonatite are carried out by the study of coherence analysis, seismic reflection feature analysis and palaeotectonics analysis. In aspects of microcosmic studies, starting off analysis in reservoir geophysical response feature of fracture and karst-cave model according to guidance of the macroscopic geological model in carbonate reservoir, the methods of the carbonate reservoir prediction are developed by comprehensively utilization of seismic multi-attribution intersection analysis, seismic inversion restricted by log, seismic discontinuity analysis, seimic spectrum attenuation gradient, moniliform reflection feature analysis and multiparameter karst reservoir appraisement.Through application of carbonate reservoir synthetical geophysics prediction, the author r successfully develops the beneficial reservoir distribution province in Ordovician of Katake block 1in middle Tarim basin. The fracture-cave reservoir distributions are delineated. The prospect direction and favorable aims are demonstrated. There are a set of carbonate reservoir prediction methods in middle Tarim basin. It is the favorable basic technique in predicting reservoir of the Ordovician carbonate in middle Tarim. Proven by exploration drilling, the favorable region of moniliform reflection fracture and pore-cave and cave-fracture in lower-middle Ordovician are coincidence with the region of hydrocarbon show. It’s indicated that the reservoir prediction methods described in the study of Ordovician carbonate formation are feasible practicably.
Resumo:
The largest mass extinction in the Phanerozoic happened at the end of the Permian. The microbialites formed in the extreme environments after the mass extinction has become a hotspot for geologists and paleontologists throughout the world. The dendroid microbialites that were described for the first time in 1999 from the Permian-Triassic boundary section at Laolongdong, Chongqing, have been studied by many geologists from China and overseas. Two important viewpoints about their origin have been proposed. Some researchers believed that they resemble Quaternary travertine shrubs in form, and may belong to microbialites. Some other researchers proposed that the dendroid structure is composed of clots formed by coccoidal cynaobacteria, and is microbialite. Our detailed survey on the section reveals that: (1) there is an interval of speckled “microbialite” in the section, and it underlies the dendroid “microbialite”, (2) the dendroid “microbialite” does not always have dendroid appearance; they are dendroid only in very local places; they are not dendroid in most places; for this reason, they are not comparable to recent tufa; (3) the volume of the dendroid structure greatly increases toward the top of the dendroid microbialite interval: accounting to 70% of the whole rock in the top part. This distribution pattern implies that the formation of this structure may be related to downward migration of the diagenetic fluid. Examination of thin sections reveals that the dendroid structure or point-like structure in the “microbialite” look as lighter areas in the thin sections and are composed of large blocky clear calcites containing scattered yellow dirty small calcite rhombi and irregular “points” of relict lime mudstone or wackestone or packstone. Their formation is by any one of the following two processes: (1) dissolution → filling of large blocky calcite; (2) dolomitization → dedolomitization → dissolution by meteoric fresh water → filling by large blocky calcites. It has been found that there are at least two sea-level falls during the P-T transition. As the sea level fall, the carbonate deposits came into supratidal environment, and suffered dolomitization caused by evaporative fluid or mixing water of sea water and meteoric water. Since the fluid migrated downward from the top of the deposits and in random pathway, the dolomitization formed dendroid or speckled dolomitic areas. As the deposits came into subaerial environments, the meteoric fresh water migrated along the dendroid or speckled dolomitic area with higher porosity, and dissolution happened, which caused the rock became spongy or alveolate. In later time, after the strata came into phreatic zone, large clear blocky calcites grew in and filled the pores in the spongy areas. The dendroid and speckled structure were formed in this way, rather than composed of clots formed by coccoid cyanobecteria. The microbial fossils in Laolongdong section include two types. The first is the tube-like cyanobecteria in middle Bed 3, which are generally less than 1 mm in length, taper toward one end, and are internally filled by microspars. They are straight or sinuous, with micritic wall 0.005~0.01 mm thick. Since this kind of microbial fossils are abundant in middle Bed 3, this rock belongs to microbialite. The second type occurs in Bed 5 and lower and middle Bed 6. They are irregular globular in shape, generally 0.2 ~ 0.5 mm in size, with several outward progresses, and internally filled by one layer of needle-like calcite cements on the wall and the large blocky calcite in the inner space. According to their shape and preservation way, it is inferred that this kind of fossils were formed from some kind of bacterial colony. The bacterial colony may be cuticle in composition, since it has some hardness as it is indicated by its resistance to deposit loading. These organisms discomposed during diagenetic time, and formed good porosity. In later diagenetic time, these pores were firstly cemented by needle-like calcites and later filled by large blocky calcites. So, the bacterial colony promoted the formation of dendroid and speckled structures. However, they did not always form such structures. On the other hand, even though no bacterial colony or other microbes or any kind of fossils were present, dendroid or speckled structures can form. Bed 4 of Laolongdong section contains abundant gastropods but no microbial fossils, and is not microbialite, even though it is speckled. The top of Bed 6 is dendroid, but contain no microbial fossils, and is not micrbialite.
Resumo:
The two major issues in mining industry are work safety and protection of ground environment when carrying on underground mining activities. Cut-and-fill mining method is increasingly applied in China owing to its advantages of controlling ground pressure and protecting the ground environment effectively. However, some cut-and-fill mines such as Jinchuan nickel mine which has big ore body, broken rock mass and high geostress have unique characteristics on the law of ground pressure and rock mass movement that distinguish from other mining methods. There are still many problems unknown and it is necessary for the further analysis. In this dissertation, vast field survey, geology trenching and relative data analysis are carried out. The distribution of ground fissures and the correlation of the fissures with the location of underground ore body is presented. Using of monitoring data by three-dimension fissure meter and GPS in Jinchuan Deposit Ⅱ, the rule of the surface deformation and the reason of ground fissures generation are analyzed. It is shown that the stress redistribution in surrounding rocks resulting from mining, the existence of the void space underground and the influence of on-going mining activities are three main reasons for the occurrence of ground fissures. Based on actual section planes of No.1 ore body, a large-scale 3D model is established. By this model, the complete process of excavation and filling is simulated and the law of rock mass movement and stability caused by Cut-and-fill Mining is studied. According to simulation results, it is concluded that the deformation of ground surface is still going on developing; the region of subsidence on the ground surface is similar with a circle; the area on the hanging wall side is larger than one on the lower wall side; the contour plots show the centre of subsidence lay on the hanging wall side and the position is near the ore body boundary of 1150m and 1250m where ore body is the thickest. Along strike-line of Jinchuan Deposit Ⅱ, the deformation at the middle of filling body is larger than that in the two sides. Because of the irregular ore body, stress concentrates at the boundary of ore body. With the process of excavation and filling, the high stress release and the stress focus disappear on the hanging wall side. The cut-and-fill mechanism is studied based on monitoring data and numerical simulation. The functions of filling body are discussed. In this dissertation, it is concluded that the stress of filling body is just 2MPa, but the stress of surrounding rock mass is 20MPa. We study the surface movement influenced by the elastic modulus of backfill. The minimal value of the elastic modulus of backfill which can guarantee the safety production of cut-and-fill mine is obtained. Finally, based on the real survey results of the horizontal ore layer and numerical simulation, it is indicated that the horizontal ore layer has destroyed. Key words: cut-and-filling mining, 3D numerical simulation, field monitoring, rock mass movement, cut-and-filling mechanism, the elastic modulus of backfill, the horizontal ore layer
Resumo:
I address of reconstruction of spatial irregular sampling seismic data to regular grids. Spatial irregular sampling data impairs results of prestack migration, multiple attenuations, spectra estimation. Prestack 5-D volumes are often divided into sub-sections for further processing. Shot gathers are easy to obtain from irregular sampling volumes. My strategy for reconstruction is as follows: I resort irregular sampling gathers into a form of easy to bin and perform bin regularization, then utilize F-K inversion to reconstruct seismic data. In consideration of poor ability of F-K regularization to fill in large gaps, I sort regular sampling gathers to CMP and proposed high-resolution parabolic Radon transform to interpolate data and extrapolate offsets. To strong interfering noise--multiples, I use hybrid-domain high-resolution parabolic Radon transform to attenuate it. F-K regularization demand ultimately for lower computing costs. I proposed several methods to further improve efficiency of F-K inversion: first I introduce 1D and 2D NFFT algorithm for a rapid calculation of DFT operators; then develop fast 1D and 2D CG method to solve least-square equations, and utilize preconditioner to accelerate convergence of CG iterations; what’s more, I use Delaunay triangulation for weight calculation and use bandlimit frequency and varying bandwidth technique for competitive computation. Numerical 2D and 3D examples are offered to verify reasonable results and more efficiency. F-K regularization has poor ability to fill in large gaps, so I rearrange data as CMP gathers and develop hybrid-domain high-resolution parabolic Radon transforms which be used ether to interpolate null traces and extrapolate near and far offsets or suppress a strong interfere noise: multiples. I use it to attenuate multiples to verify performances of our algorithm and proposed routines for industrial application. Numerical examples and field data examples show a nice performance of our method.
Resumo:
The magnetosphere-ionosphere coupling is mainly manifested by the trans- porting processes of energy into the ionosphere , the energy is carried by solar wind and firstly accumulate at the magnetosphere, and the coupling processes also significantly include the interaction between the magnetosphere and ionosphere for mass and energy. At the quiet condition, energy is delivered by the large-scale convection of the geomagnetic field; the huge energy from solar wind bulk will be injected into and consumed at the near magnetosphere and ionosphere by the geomagnetic storm and substorm activities. Aurorae and FACs (Field-aligned currents) are the important phenomena in the coupling processes. In the present work, firstly, we analyze the activity characteristics of auroral precipitating particle, secondly, we study the distribution characters of large-scale field aligned currents (LS FACs) at storm-time using the observations from different satellites at different altitudes. Finally, we investigate the evolution of the geomagnetic field configuration at the nightside sector on the onset of the expansion phase in a substorm event, the substorm event happened at 0430UT to 0630UT on 8th Nov. 2004. The main results as follows: At the first, the data of the estimated power input (EPI) of auroral particles from NOAA/POES (Polar orbiting environmental satellite) for some 30 years have been analyzed. The variation tendencies of the EPI generally coincide with aa, AE and Dst indices. The annual variation of EPI shows equinox peaks and an asymmetric-activity with a higher peak in the winter-hemisphere than in the summer-hemisphere. The diurnal UT variations are different from north and south hemisphere: for north hemisphere, the peak appears at 1200UT, and the relative deviation is 22% to the daily average of the north hemisphere. For south hemisphere, the maximal deviation is 22% at 2000UT. So the diurnal variation of EPI is more dominant than the annual variation which maximal deviation is 3% to 12% for different seasons. Studies on correlations of the hourly average of EPI, Pa, with AE and Dst indices show a correlation coefficient r=0.74 of Pa and AE, and r=-0.55 of Pa and Dst. The hourly EPIs for north and south polar regions, NPa and SPa, show a north-south asymmetry with a higher correlation of SPa and AE (or Dst). Time delays of EPI with respect to magnetic indices are examined, the maximum correlation coefficient of Pa with AE (r=0.78) occurs when the time delay =0, suggesting a synchronous activity of auroral electrojet and auroral precipitating particles, while =1-2h, the correlation coefficient of Pa with Dst is maximum (r=0.57), suggesting that the activity of auroral particle precipitating may influence the ring current on some extent. Sencondly, we use the high-resolution magnetic field vector data of the CHAMP satellite to investigate the distribution of large-scale FACs during the great magnetic storm on 7th to 8th Nov. 2004. The results show that, whether in the northern or southern hemisphere, the number and density of large-scale FACs during the main-phase are more and bigger than these during the recover-phase, and the number of large-scale FACs in morning sector obviously is more than that in afternoon sector. In terms of the magnetic indices, we find that large-scale FACs in morning sector significantly affected by the substorm activities, while in afternoon sector the large-scale FACs mainly indicate the fluctuations of the ring-current in storm time. Accordingly to the former studies, similarly, we find that in the morning sector, the scale of the large-scale FACs move to the high-latitude region, and in the afternoon sector, large-scale FACs distinctly expand to the low-latitude region. During the time periods that the NOAA/POES auroral precipitating particle power data temporally correspond to the large-scale FACs, the more the power of auroral particle is, the more and bigger the number and density of FACs are. At the same time, we use the magnetic field vector data of POLAR obtain a good form of region 1, region 2, and three pieces of cusp FACs during a single transit at 1930UT-2006UT on 07th. And the characteristics of simultaneous electric field and energy particles observations on Polar are coincide with the five FACs pieces. Finally, by means of the observation of Cluster 4 and Goes 10、 Goes 12, we analyze the evolution process of the change of the magnetic field configuration at night sector at the expansion phase of a substorm event which happened during 0430UT to 0630UT on 8th Nov. 2004, we find that the times of the beginning of the polarizations of magnetic field are observed from Goes 10 to Goes 12 then to Cluster 4. So, at the synchronous orbit ( 6.6 RE) to 10RE distance scale of the neutral sheet, the current disruption spread tailward. Simultaneously, the strengthen of the FACs deduced from these satellites’ magnetic field observations are almost consistent with the times of polarizations, as well as the high energy particles injection and the electric field dominant variation. The onset times determined by the magnetic field polarizations from these satellites are all ahead of the onset time that confirmed from the auroral electrojet indices. So, these characters of different observations can be used as the criterions to determine the onset time for the substorms of such type as we studied.
Resumo:
Seismic technique is in the leading position for discovering oil and gas trap and searching for reserves throughout the course of oil and gas exploration. It needs high quality of seismic processed data, not only required exact spatial position, but also the true information of amplitude and AVO attribute and velocity. Acquisition footprint has an impact on highly precision and best quality of imaging and analysis of AVO attribute and velocity. Acquisition footprint is a new conception of describing seismic noise in 3-D exploration. It is not easy to understand the acquisition footprint. This paper begins with forward modeling seismic data from the simple sound wave model, then processes it and discusses the cause for producing the acquisition footprint. It agreed that the recording geometry is the main cause which leads to the distribution asymmetry of coverage and offset and azimuth in different grid cells. It summarizes the characters and description methods and analysis acquisition footprint’s influence on data geology interpretation and the analysis of seismic attribute and velocity. The data reconstruct based on Fourier transform is the main method at present for non uniform data interpolation and extrapolate, but this method always is an inverse problem with bad condition. Tikhonov regularization strategy which includes a priori information on class of solution in search can reduce the computation difficulty duo to discrete kernel condition disadvantage and scarcity of the number of observations. The method is quiet statistical, which does not require the selection of regularization parameter; and hence it has appropriate inversion coefficient. The result of programming and tentat-ive calculation verifies the acquisition footprint can be removed through prestack data reconstruct. This paper applies migration to the processing method of removing the acquisition footprint. The fundamental principle and algorithms are surveyed, seismic traces are weighted according to the area which occupied by seismic trace in different source-receiver distances. Adopting grid method in stead of accounting the area of Voroni map can reduce difficulty of calculation the weight. The result of processing the model data and actual seismic demonstrate, incorporating a weighting scheme based on the relative area that is associated with each input trace with respect to its neighbors acts to minimize the artifacts caused by irregular acquisition geometry.