968 resultados para Intermediate Compartment
Resumo:
We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance. © 2011 American Psychological Association.
A commentary on 'contextualising the intermediate financial accounting courses in the global crisis'
Resumo:
SNX-BAR proteins are a sub-family of sorting nexins implicated in endosomal sorting. Here, we establish that through its phox homology (PX) and Bin-Amphiphysin-Rvs (BAR) domains, sorting nexin-4 (SNX4) is associated with tubular and vesicular elements of a compartment that overlaps with peripheral early endosomes and the juxtanuclear endocytic recycling compartment (ERC). Suppression of SNX4 perturbs transport between these compartments and causes lysosomal degradation of the transferrin receptor (TfnR). Through an interaction with KIBRA, a protein previously shown to bind dynein light chain 1, we establish that SNX4 associates with the minus end-directed microtubule motor dynein. Although suppression of KIBRA and dynein perturbs early endosome-to-ERC transport, TfnR sorting is maintained. We propose that by driving membrane tubulation, SNX4 coordinates iterative, geometric-based sorting of the TfnR with the long-range transport of carriers from early endosomes to the ERC. Finally, these data suggest that by associating with molecular motors, SNX-BAR proteins may coordinate sorting with carrier transport between donor and recipient membranes.
Resumo:
The relation between the fragility of glass-forming systems, a parameter which describes many of their key physical characteristics, and atomic scale structure is investigated by using neutron diffraction to measure the topological and chemical ordering for germania, or GeO2, which is an archetypal strong glass former. We find that the ordering for this and other tetrahedral network-forming glasses at distances greater than the nearest neighbor can be rationalized in terms of an interplay between the relative importance of two length scales. One of these is associated with an intermediate range, the other with an extended range and, with increasing glass fragility, it is the extended range ordering which dominates.
Resumo:
This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Diabetic nephropathy (DN) is characterized by an early, progressive expansion and sclerosis of the glomerular mesangium leading to glomerulosclerosis. This is associated with parallel fibrosis of the renal interstitium. In experimental renal scarring, the protein cross-linking enzyme, tissue transglutaminase (tTg), is up-regulated and externalized causing an increase in its crosslink product, e-(γ-glutamyl)-lysine, in the extracellular space. This potentially contributes to the extracellular matrix (ECM) accumulation central to tissue fibrosis by increasing deposition and inhibiting breakdown. We investigated if a similar mechanism may contribute to the ECM expansion characteristic of DN using the rat streptozotocin model over 120 days. Whole kidney e-(γ-glutamyl)-lysine (HPLC analysis) was significantly increased from Day 90 (+337%) and peaked at Day 120 (+650%) (p <0.05). Immunofluorescence showed this increase to be predominantly extracellular in the peritubular interstitial space, but also in individual glomeruli. Total kidney transglutaminase (Tg) was not elevated. However, using a Tg in situ activity assay, increased Tg was detected in both the extracellular interstitial space and glomeruli by Day 60, with a maximal 53% increase at Day 120 (p <0.05). Using a specific anti-tTg antibody, immunohistochemistry showed a similar increase in extracellular enzyme in the interstitium and glomeruli. To biochemically characterize glomerular changes, glomeruli were isolated by selective sieving. In line with whole kidney measurement, there was an increase in glomerular e-(γ-glutamyl) lysine (+ 361%); however, in the glomeruli this was associated with increases in Tg activity (+228%) and tTg antigen by Western blotting (+215%). Importantly, the ratio of glomerular e-(γ-glutamyl) lysine to hydroxyproline increased by 2.2-fold. In DN, changes in the kidney result in increased translocation of tTg to the extracellular environment where high Ca2+ and low GTP levels allow its activation. In the tubulointerstitium this is independent of increased tTg production, but dependent in the glomerulus. This leads to excessive ECM cross-linking, contributing to the renal fibrosis characteristic of progressive DN.
Resumo:
Atomic ordering in network glasses on length scales longer than nearest-neighbour length scales has long been a source of controversy(1-6). Detailed experimental information is therefore necessary to understand both the network properties and the fundamentals of glass formation. Here we address the problem by investigating topological and chemical ordering in structurally disordered AX2 systems by applying the method of isotopic substitution in neutron diffraction to glassy ZnCl2. This system may be regarded as a prototypical ionic network forming glass, provided that ion polarization effects are taken into account(7), and has thus been the focus of much attention(8-14). By experiment, we show that both the topological and chemical ordering are described by two length scales at distances greater than nearest-neighbour length scales. One of these is associated with the intermediate range, as manifested by the appearance in the measured diffraction patterns of a first sharp diffraction peak at 1.09( 3) angstrom(-1); the other is associated with an extended range, which shows ordering in the glass out to 62( 4) angstrom. We also find that these general features are characteristic of glassy GeSe2, a prototypical covalently bonded network material(15,16). The results therefore offer structural insight into those length scales that determine many important aspects of supercooled liquid and glass phenomenology(11).
Resumo:
This study investigates the use of Pyroformer intermediate pyrolysis system to produce alternative diesel engines fuels (pyrolysis oil) from various biomass and waste feedstocks and the application of these pyrolysis oils in a diesel engine generating system for Combined Heat and Power (CHP) production. The pyrolysis oils were produced in a pilot-scale (20 kg/h) intermediate pyrolysis system. Comprehensive characterisations, with a view to use as engine fuels, were carried out on the sewage sludge and de-inking sludge derived pyrolysis oils. They were both found to be able to provide sufficient heat for fuelling a diesel engine. The pyrolysis oils also presented poor combustibility and high carbon deposition, but these problems could be mitigated by means of blending the pyrolysis oils with biodiesel (derived from waste cooking oil). The blends of SSPO (sewage sludge pyrolysis oil) and biodiesel (30/70 and 50/50 in volumetric ratios) were tested in a 15 kWe Lister type stationary generating system for up to 10 hours. There was no apparent deterioration observed in engine operation. With 30% SSPO blended into biodiesel, the engine presents better overall performance (electric efficiency), fuel consumption, and overall exhaust emissions than with 50% SSPO blend. An overall system analysis was carried out on a proposed integrated Pyroformer-CHP system. Combined with real experimental results, this was used for evaluating the costs for producing heat and power and char from wood pellets and sewage sludge. It is concluded that the overall system efficiencies for both types of plant can be over 40%; however the integrated CHP system is not economically viable. This is due to extraordinary project capital investment required.
Resumo:
A comparison of fast and intermediate processes is given. New developments in technology are described for intermediate pyrolysis and an advanced integrative combination of biomass based processes is proposed. © 2013 Woodhead Publishing Limited All rights reserved.
Resumo:
We study the probability density function of the group-delay in few-mode fibres, validating for the first time an analytical estimation for the maximum group-delay spread as a function of linear mode coupling for fibres with more than three LP modes.
Resumo:
The spray zone is an important region to control nucleation of granules in a high shear granulator. In this study, a spray zone with cross flow is quantified as a well-mixed compartment in a high shear granulator. Granulation kinetics is quantitatively derived at both particle-scale and spray zone-scale. Two spatial decay rates, DGSDR (droplet-granule spatial decay rate) ζDG and DPSDR (droplet-primary particle spatial decay rate) ζDP, which are functions of volume fraction and diameter of particulate species within the powder bed, are defined to simplify the deduction. It is concluded that in cross flow, explicit analytical results show that the droplet concentration is subject to exponential decay with depth which produces a numerically infinite depth of spray zone in a real penetration process. In a well-mixed spray zone, the depth of the spray zone is 4/(ζDG + ζDP) and π2/3(ζDG + ζDP) in cuboid and cylinder shape, respectively. The first-order droplet-based collision rates of, nucleation rate B0 and rewetting rate RW0 are uncorrelated with the flow pattern and shape of the spray zone. The second-order droplet-based collision rate, nucleated granule-granule collision rate RGG, is correlated with the mixing pattern. Finally, a real formulation case of a high shear granulation process is used to estimate the size of the spray zone. The results show that the spray zone is a thin layer at the powder bed surface. We present, for the first time, the spray zone as a well-mixed compartment. The granulation kinetics of a well-mixed spray zone could be integrated into a Population Balance Model (PBM), particularly to aid development of a distributed model for product quality prediction.
Resumo:
The purpose of this study is to determine which of several treatment groups and/or grades have shown growth when increased writing time allotment has occurred. Third, fourth and fifth grade students identified as Gifted, Learning Disabled, and Limited English Proficient enrolled in ESOL classes were the 69 subjects.^ All students were allotted at least one hour of writing time, four days a week for the school year of 1994-1995. Writing activities conducted during the school year involved the full writing process, including prewriting, drafting, revising, and editing. Pretests and posttests were administered across the grade levels at a designated period of time using the same administration procedures as the Florida Writing Assessment Program. Three teachers rated each sample on a scale of zero to three.^ The results of the oneway ANOVA indicated that the three raters did not score the pretests and posttests significantly different from each other. A single group pretest-posttest experimental design was used on the three groups. The results of the Gifted group revealed that the Gifted C subgroup (Gifted Behavioral) appeared to have averaged a higher gain score than both the Gifted A and Gifted B subgroups. For the four subgroups of the LD group, no distinct pattern was evident. The Group C subgroup (ADD) appeared to have scored lower than the other three subgroup although their mean IQ score was higher than the others LD subgroups. Comparisons were difficult to make among the four ESOL subgroups due to low subjects and/or scores. Qualitative analyses were also conducted using semi-structured interviews with the Gifted, Learning Disabled, and ESOL teachers. All believed the additional instructional time spent on writing made the difference in the increased writing scores.^ The study indicated that time alone is not a significant factor in developing accomplished writers. Direct instruction perhaps in a specific strategy or skill may lead to significant results. ^
Resumo:
A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion ® membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused.^ This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent.^ The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (∼1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping agents to phosphoric acid can be found, which afford better transport properties of dissolved gases, reduced anion adsorption onto catalyst sites, and which maintain stability and conductive properties at elevated temperatures.^
Resumo:
The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2–3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^